Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 1 of 42

EXHIBITM

275

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 2 of 42

Version 0.3

276

Disk Operating System for the 8086

le Computer Products,

114 Industry Drive, Saattle, VWA, 98188
(206) 575-1830

fre,

EXHIBET NO. 2h_ }
/-8 -07

C. HAMMER

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 3 of 42

L s i ——

TABLE OF CONTENTS

PROGRAMMING GUIDE & v v 4 4 v ¢ o o « o o o o o 4 « .
Operating System Calls. . . v © & v v v o v v o v + «
— Summary of B6-DOS FunctiomS. + v o o « o & o« o« . .
ji Intertupt Table Usage: v v v v 4 4 o ¢ o 2 o « 4

’ : Requesting @ FuncEioms o s + 4 v o v 4 & o + « o

i Simple Device I/0 FunctionS. . « « ¢ « o o & « o
Miscellaneous FUNCELIONSe « v « o o v o & 'a 4 o « .15
Using Operationg System FunctiomS. - = « . « .«16
Runtiing a User Programe + o« « « v v o v = o o + o o« o17

NN B WW

CUSTOMIZING .B6=DUSe « « « « v v v 4 o « « o o v o o .19
Setting the Special Editing Commands19
Customizing the I/0 Section. « « « v & v o20

BOOTSTRAP LOADER LISTTING. - + » o o v v o o o v v . .26

I/0 SECTION LISTING « 4 v v v & v o o & . . v e e o 29

COPYRIGHT 1980 by Seattle Computer Products Inc.
All rights reserved.

Page 2

277

-

278

ngramming Guide.

Operating System Calls

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 4 of 42

The purpose of the operating system core is to provide a high-level, hardware
independent interface between a user program and its hardware environment.
Most functions that the user may request can be grouped into two categaries.

DJ.mylc device I/\.) and disk file IIO.
The simple I/0 functions are:

Input console character

_Output console character

Input from auxiliary

Output to auxiliary

Qutput to printer

Qutput character string to console
Input Buffered line from console

Check console for input character ready

The disk 1/0 functions include:

Reset disk system

Select default disk

Scan disk directory
Create file

Open file

Close file

Delete file

Rename file

Pead/lirice file record(s]
Set disk transfer address

Fage 3

279

Case 2:05-cv-01719-TSZ Document 14-8

Summary of 86-DOS Functions

No.

16

1L

13
15
15
16
17
18
19
20
21
22
23
25

26

Page %

Function

Progran terminate
Conscle Inpuk
Console Qutput
Auxiliary Inmput
Auxiliary Output
Printer Qutput

Direct Console 1/0

Quput String
Input String

Check Console Status

Disk Syﬁtem Reseat
Select Default Drive
Open File

Clcse File

Search for First
Search for Hext
Delete File
Sequential Read
Sequential Write
Create File
Rename File

Get Default Drive

Set Disk 1/0 Address

Inputé

None
None
DL = Character
None
DL = Character

DL Character

i

DL = OFFH

or
DL = Character

DS:DX = String

DS:DX = Buffer

None

None

DL = Drive
DS:DX = FCB
D3:BX = FCB
D$:DX = FCB
D§:DX = FCB
DS:DX = FCB
NS:DX = FCB
DS:DX = FCB
DS:DX = FCB
DS:DX = Modified FCB
ttone

DS:DX = I/0 address

Outputs

None

AL, = Character
None

AL = Character
None

" None .

AL = Char., if ready

AL = 0 if not Teady
None

None
None

AT, = OFFR 1f ready
AL = 0 1if not ready

AL = No. of drives

AL = Errox Eieg

>
-
1

Error flag
= Found flag
= Found flag
= Found flag
Error flag
= Error flag

= Error flag

P E B B B B B

= Found flag
AL = Default drive

None

Filed 03/15/07 Page 5 of 42

Page

15

il
12
12
12
12
12
‘12
13
13

13

280

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 6 of 42

SUMMARY OF 86-DOS FUNCTIONS (Continued)

27

31
33
34
35

36

38

39

40

41

Allocation Address

Parameter Address
Random Read
Random Write

Get File Size
Get File Address

Set Vector

Create Segment

Random Block Read
Random Block Urite

Parse File Hawme

None
None
DS:DX = FCB
DS:DX = FCB
DS:DX = FCB

D3:LX = FCB

DS:DX = Vector address
AL = Ianterrupt type

]

DX = Segment number

- DS:DY ~ FCB

CX = Record count

DS:DX = FCB
CX = Record count

DS:SI = Input line
ES:DI = FCB

AL = 0 (mo pre-scan)

Al = 1 (scan scparators)

D8:BX = Address
DX = Disk size

AL = Block

size

DS:BX = Address

AL

Exror

AL = Error

AL

%

ErTor

None

None

AL, = Error

AL = Error

51 updated

flag
flag

flag

flag

flag

13

13
13
13
13
14

15

15

14
14

15

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 7 of 42

Interrupt Table Usage’

: The first lK of memory, absolute address 00000 to 003FF hex, is reserved by the
8086 for the interrupt table. Within this table, locatioms 00080 to 000FF, which
correspond to interrupt types 32 to 63 hex, are reserved for 86-DOS. Specific
interrupt types have been defined as follows:

32 - Program terminate. The Terminate and Ctrl-C Exit addresgses are restored to the
values they had on entry to the terminacing program. All €ile buffers are flushed,
but files which have been changed in length but mot closed will not be recorded
properly in the disk directory. Comtrol transfers to the Terninate address.

33 - Function request. See “Requesting a Function", below.

b

34 — Terminate address. On eatry to a program, this is the address to which control
will transfer when the program terminates. This address is copied into low memoxy
§ in the program segment when it is created by Fumction 38. A program may change this
: address, but this does not affect what happens when it terminates, since the
Termipate address is restored from the copy in the program segment. If the program
executes a second program, it must set the Terminate address to the location that

the second program will transfer to on termination.

35 ~ Ctrl-C Exit address. If the user at the console types Ctrl-C during cansocle
input or ocutput, an interrupt type 35 hex is executed. If the Ctrl-C routine
preserves all Tegisters, it may end with a retuvrm—from-interrupt instruction (IRET)
to continue program execution. If the Ctri-C handler does wothing but an VIRET"Y,
Cerl-C will appear to have no effect.

1—

If the program executes a second progrem which itself changes the Ctrl—C Exit

address, then on termination of the second program and return to the first, the
Ctrl-C address is restored to value 1t had beaforxe the second program changed it.

"

36 - Hard Disk Error Exit ‘address.

37 - Absolute disk read. Control transfers directly to the I/0 system disk read
routine. On return, the original flags are still on the stack (put there by the INT
: instruction), which is necessary because return information is passed back in the

i flags. Be sure to pop-the stack to prevent uncontrolled growth.

i 38 - Absolute disk write. See above.

Page.6

281

W T W W

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 8 of 42

Requesting a Function

The user program requests a functiom by putting a function number inm the 4H
reglster, possibly setting another register according to the function
specifications, and perforning an interxupt type 33, The user’s stack must have a
rotal of 16 levels (32 bytes) of spate avallable before performing the interrupt,
which will insure compatibility with future multi-user versions of 86-D0S. When
86-DOS takes control 1L saves all the user's Tegisters except AL and switches to an
internzl stack. Thus all registers, including the flags but exceprting AL, will be
unchanged on return unless moted otherwise in the function specification.

Those functions whose pumbers are 36 or less are also available through a different
call mechanism. The function number is placed in the CL register, any other
registers are set In their usual way according to the functiom specifications, and
a normal 3-~byte (imtra—scghent) 15411" is made to location 5 in the current code
segment. Register AX is always dastroyed by this calling method, but otherwise it
is the same as the normal {interrupt) method. This form is provided to simplify
translation of 8080/Z80 programs into B086 cade, and is not recommended for mew

PIOgTams.

Sknple Device /O Functions

1L - Console input. Waits for a character to be ryped on rthe comsole, then echos the
character {as in Funcetion 2) and returns it in AL. The character is checked for a
control function as described in Functiom 2 below.

2 - Console output. The character im reglster DL is output to the comsole. The
parity bit (bit 7) must be zexo unless a special terminal functilon Is desired. Tabs
are expanded in columns of 8., Rubout (7F hex) is output but is vot counted in tab
counting. After output,-the console is checked for a control function:

Ctrl-8 suspends everything uutil any key is typed.

Ctrl-P sends all console output to the printer also.

Ctrl-N stops sending output to the printer.

Ctrl-C causes an interrupt to the Ctrl-C address.

J - Auxiliory input. Waits for 2 character from the auxiliary input device, then
returns that character im AL.

Page 7

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 9 of 42

SIMPLE DEVICE I/0 FUNCTIONS (Continued)

& — Auxiliary output. The character in DL is output to the auxiliary ocutput device
5 — Printer output. The character in DL is output to the printer.

6 - Direct Console 1/0. If DL is FF hex, them AL returms with a console input

character if one is ready, otherwise 00. If DL is not FF hex, then DI, is assumed t
have a valid character which is output to the comsole,

; 9 -~ Print string., On entry, DS:DX must point to a character string in memory
terminated by a "$" (24 hex). Each character in the string will be output to the
console in same form as Function 2, including subsequent status check.

10 - Buffered console input. Om entry, DS:DX point to an input buffer. The first
byte must not be zero and specifies the number of characters the buffer can hold.
Characters are read from the console and placed in the bufFer beginning with cthe
third byte. Reading the conscle and fi1ling the buffer continuves until carriage
return is typed. If the buffer fills to one less than maximum, then additional
| console input is ignored until a carriage return is received. The second byte of
PR} the buffer is set to the number of characters received excluding the carriage @
,} return (0D hex), which is always Lhe last oOue. =

A uumber of control fumctions are vecognized vwhile reading the console:

Jab, Ctrl-S, Ctrl-P, Crrl-N, Ctrl-C have the same effects as listed
under Funection 2.

Rubout, delete, backspace, Ctrl-H (7F hex or 08 hex): Backspace. Bemoves
the last charaecter from the input buffer and erases it from the coansale.

Linefeed, Ctrl~J (10 hex): Physical end-of-line. Outputs a carrilage
return and linefeed but does not effect the inmput buffer.

Ctel~X (18 hex): Cancel line. Outputs a back slash, carriage return, and
linefeed and resets the input buffer to empty. The remplate used by the
special editing command is unchanged.

SPECIAL EDITING COMMANDS. A number of speclal editing commands are avallable
to the user éntering & line at the console. All of these involve a
“cemplate", which 1s a valid input line available to the user for
modification. There are two ways to obtaln a template.

If the input buffer already contained a valid input lipe on entry to Function
10, then this is a template. A valid ioput line is one in which the characcer

283

284

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 10 of 42

SIMPLE DEVICE I/0 FUHCTIONS (Coutinued)

¢+ count at the second byte of the buffer 1s less than the buffer lemgth, and a
carriage return (0D hex) immediately follows the text in the buffer. Note
that a buffer that has previously been used for loput and bhas not been
modified will meet these requirements.

The user at the cousole may also create a template. One of the editing

commands is to comvert that part of the line entered so fat into the
template, and restart the line entry. This allows an error near the start of
a line to be corrected without retyping the rest of the.llne.

Each editing command is selected by typing ESCAPE and a letter. Since nany
terminals provide keys which produce such an "egcape code” with a single
keystroke, the letter used after the ESCAPE may be set for each command
during B86-DO0S customization. The standard escape sequences correspond to the
special function keys of a VI-52 or simllar terminal, &s noted in each case

by parentheses.

ESC § (Fl) - Copy one character from the tenplate to the new line.

ESC T (F2) — Must be followed by amy character. Coples all characters
from the template to the new line, up ta but not includiag the next
occurreuce in the cemplate of the specified character. If the specified
character does not occur, nothing is copied to the new line.

ESC U (F3) -~ Copy all remaining characters in the template to the new
li'neo ’

ESC V (F4) - Skip over ome chiaracter ia the template.

ESC W (F5) - Must be followed by any character. Skips over all

characters in the template, up to but net including the next occurrence
in the template of the specified character. If the specified character
does not ocecur, na characters are skipped.

ESGC P (BLUE) ~ Enter insert mode. As additional characters are typed,
the current position in the template will not advance.

ESC Q (RED) - Exit insert mode. The position in the template is advanced
for each character typed. When editing begins, this moda is selected by
default.

ESC R (CRAY) - Hake the new line che template. Prints an “@", a carriage
return, and a line feed. Buffer is set to empty and insert wmode is
turned off.)

11 - Check console status. Lf a character is walting at the consale, AL
will be FF liex on return. Otherwise, AL will be 00.

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 11 of 42

Disk VO Functions

Disk files are identified by a disk drive code, a file name of up to B
characters, and an extension of up to J characters. The drive code may
explicitly specify a drive, or the default drive may be used. Case is
jrrelevent in the file name or extemsiom, since only upper case 18 used
internally. If the file name or extension includes a question mark (')
in any position, then that position will match any character. Thus a
single file name wich embedded question marks may match more than one
directory entry.

Generally, functious operating on disk files will use a File Control
Block, or FCB, The FCB is a 33~ or 36-byte segment of memory with
{nformation about a file, Formatted as follows:

BYTE O - Drive Gode. Zeroc speclifles the default drive, l=drive A,
2=drive B, etc. Note that other functions which use a drive number use
O=drive 4, l=drive B, etc.

BYTES 1-8 - File Name. If the file name is less than 8 characters, the
name must be left justified with trailing blanks.

BYTES 9-11 — Extension. If less than 3 characters, must be left
justified with trailing blanks. Hay also bhe all blanks.

-\._I/‘

BYTES 12-13 — Current Block. This word (low byte first) specifies the
current 16K block, relative the start of the file, in which sequential
disk .reads and writes occur. If zero, then the first 16K of the file 1s
being accessed; 1f one, then the second 16K; etc. Combined with the
current record field, byte 32, a particular 128-byte record is
identified. .

BYTES 14-31 - Reserved for system use once the file is opened and until
it is closed.

BYTE 32 — Current Record. Identifies the record within the curremt L6K
block that will be accessed with a sequential read or write functiom.

BYTES 33-35 —~ Random Recoxrd. This 24-bit number (low byte first) need be
present only when the file is accesged with a random read or write
function. It is the positiom in the file of a 128-byte recard.

Norice that there are two ways to address a tecord within a file. The
Current Block and Current Record flelds together address a recerd when
the file is accessed with the sequential read and write functions. The
Random Record field addresses a record when the file is accessed with
the random read and write functioms. The appropriate fields may be set
before elther a sequential or random tramsfer to select the next record
te ve accessed.

Page 10

285

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 12 of 42

DISK 1/0 FUNCTIONS (Continued)

An unopened FCB is one in which only the flrst 12 bytes have been filled
in, i.e., name and drive code. An vpened FCB is one that has been
through a successful open or create operation (Functions 15 or 22) and
has its Random Record or Current Block/Current Recard fields set as
necessary.)

13 - Disk reset. Selects drive A as the default drive, sets the disk
transfer address to-DS:B0 hex, and flushes all file buffers. Files which
bave been changed in size will not be properly recorded in the disk
directory until they are closed. This function need not be called before
a disk change Lf all files which have been written to are closed.

14 - Select disk. The drive speciffed in DL (0=A, 1=B, etc.) is selected
as the default disk. If the DL does not represent a valid drive number,
then the default drive is not changed., In either case, AL returms with
the number of drives.

15 -~ Open file. On entry, DS:DX point to an unopened FCB. The disk
directory is searched for Lhe mamed file and AL Teturns FF hex if it is
not found. If it is found, AL will return a 00 and the FCB is filled as
follows:

1F rhe Drive Code was zero (default disk), it is changed to actual disk
used (A=l, B=2, etc.). This allows changing the default disk without
interfering with subsequent operatloms om the file.

The Current Block field is set to zexo.

All remaining fields, up to but not including the Current Record field,
are filled with system information. It is the calling progranm’s
responsibility to set the Current Record or Random Record fields as
necessary.

16 —~ Close file. This functlon must be called after file writes to
insure all directory informaticn Is updated. On entry, DS:DX peint to an
opened FCB. The disk directory is searched and if the file is found, its
position is compared with that kept in the FCB. If the file is not found
in its correct position in the directory, it is assutied the disk hss
been changed and AL returns FF hex., Othecwise, the directory update is
completed and AL returns 00.

& T T W

Page 11

286

e

287

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 13 of 42

DISK I/0 FUNCTIONS (Continued)

17 - Search For first entryg On entry, DS:DX point t¢ an unopened FCB.
The disk directery is searched for the first matching name and if none
is found, AL rveturns FF hex. Otherwise, the firat 33 bytes at the
current disk transfer address are filled with the dirctory entry and AL
returns 00. The first byte is the drive oumber (A=l, B=2, etc.) and the
next 11 bytes are the B-character file name and j-character extension.
Note that this is the format of an unopened FCB.

18 ~ Search for mext emtry. After Function 17 has been called and found
a match, Function 18 may be called to £ind the mext match in the
directory. additional matches will be found because of duplicate names
or because of "?"s appearing in the file name. Return information is the
same as Function 17. DS:DX must point to the sawe FCB used earlier by
Function 17, and this FCB must be unchanged (including no OPEN or CREATE
operations on it) because it includes information necessary to continue
the search.)

19 - Delete file. On entry, DS5:DX point to an unopened FCB. All matching
divectory entries are deleted. If wo directory emtries match, AL returns
FF, otherwise AL returns 00.

20 — Sequential read. On entfy, D5:DX point to an opened FCB. The
128-byte record addressed by the Curreamt Block and Current Record filelds
is loaded at the disk transfer address, then the record address in
incremented. If end-of-file in encountered, AL Teturms 01, otherwise AL
returns 00, ‘

21 - Sequential write. On.entry, DS:DX poiant to an opened FCB. The
128~byte record addressed by the Curreat Block and Current Record fields
is written from the disk transfer address, then the record address in
{facremented: If the disk is full, AL returns Ol, otherwise AL returns
0.

22 - Create file: On emtry, DS:DX point to an unopened FCB. The disk
directory is searched for a file of the same name, oOr failing that, any
empty entry, and AL returns FF hex if none is found or the file name is
invalid (such as imbedded "?'). Otherwise, the entry is initialized to a
zero-length file, the file is opened {see Function 15), 'and AL returos
04.

(4]
a
o
LAV

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 14 of 42

DISK I/0 FUNCTIONS (Continued)

23 — Rename file. On entry, DS:DX point to 3 modified FCB which bas a
drive code and file name in the usual position, and a second file mname
staxting 6 bytes after the first (DS:DX+l7) in what is normally resexrved
area. Every matching occuremce of the first file name Is changed te the
second name. If question marks (3F hex) appear in the second file name,
then the correspouding positions in the original name will be unchanged.
AL returns FF hex if no match was found, otherwise 00.

25 - Current digk. AL returns with the code of the current default drive
(0=A., 1=B| etc.) -

26 - Set disk transfer address. The disk transfer address 1s set to '
DS:DX.

27 ~ Allocation table address. On return, DS:BX poinC to the allocation
table for the curreat drive, DX has the number of allaocation units, &nd
AL has the number of records per allocation unlt. This fuanction is
intended only for system utilities written by SCP.

-y

31 - Disk parameter address. On return, DS:BX point to an iaterndl table
of parameters for the current default disk. This function is intended
only for system utilities writtem by SCF.

19 - Random read. On entryy DS!DX point Lo aa opened FCB. The Current
Block and Curreat Record are set to agree with the Random Record field,
then the 128-byte record addressed by these fields is loaded at the disk

transfer address. If end-of—-file is encountered, AL retvrns 01,
otherwise AL returns 00.

34 - Random write. On entry, DS:DX point to an opened FCB. The Current
Block and Current Record are set to agree with the Random Record field,
then the 128-byte record addressed by these flelds is written from the
digk transfer address. If the disk is full, AL returns 01, otherwise AL
returns 00,

’

35 - File size. On entry, D5:DX polnt to an unopened FCB. The disk
directory is searched for the first matching entry and if none is found,
AL returas FF hex. Otherwise the Random Record field is set with the
size of rhe file (in l28-byre records) and AL returns 00.

Page 13

289

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 15 of 42

DISK L/0 FUNCTIONS (Continued)

36 - Set Random Record field. Om entry, DS:DX point to an opemed FCE.
Thie function sets the Random Record field te the same file address as
the Current Block and Current Record flelds.

39 - Random block read. On entry, DS:DX point to an opened FCB, aund CX
containe a record count which must not be zero, The specifled number of
records are read from the file address specified by the Random Record
field into the disk transfer address. If end~of-file 1s reached before
all records have been read, then AL returns 0l. If wrap~around above
address FFFF hex in rhe disk tramsfer segment would oceur, as many
records as possible are read and AL returns 02, If all records are read
successfully, AL returas 00. Im any case, CX returns with the actual
number of records read, and the Random Record and Current Block/Current
Record fislds are set to address rthe mext record (the first recoxd NOT
read).

40 ~ Random block write. On entry, DS:DX point to an opened FCB, and CX
contains a record count. The specified number of records are written
from the disk transfer address to rhe file address specified by the
Random Record field. If successful, AL recurns 00. If there is
insufficient space on the disk, AL returns Ol, mno records are written,
bt CX returns the waximum numbex of records that cauld be written. IE
wrap-around above address FEFF hex in the disk transfer segment would
oceur, no records are written and AL returns 02.

A special case of this Ffunction is invoked when CX=0 on entry. This
causes the file size to Be set to length specified by the Random Record
field——upon completion, the Random Record field will poimt to the first
record beyond the end-of-file. The file will be extended or shortened as
necessary to achleve the reduested length. This provides a means to
pre~allocate files, of to shorten existing files. If there is
insufficient disk space to extend the file as requested; themn AL returns
0l and the file size is not changed. Otherwise, AL returns 0.

Page 14

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 16 of 42

DISK 1/0 FUNCTIONS (Comtinued)

4] - Parse file nmama. On entry, DS:SI poiut to a command line to parse,
2nd ES:DT point to an empty portion of memory to be filled in with an
unopened FCB. If AL = 1, then leading separators are scanned off the
command line at DS:SI. If AL = 0, then no scan—off of leading separators
takes place.

The command line is parsed for a file name of the form ‘x: f£ilenane, ext ,
and if found, a corresponding unopened FCB is created at ES:DI. If no
drive specifier is preseat, then the default drive is assumed. If no
extension is present, it is assumed to be all hlamks. 1f the character
Y% appears in the file name or extension, then all remaining characters
in the file name or extemsion are set to "7'.

If either a "2" or "*" appears in the file name or extenslom, then AL
returns Ol, otherwise 00, DS:ST will return pointing te the first
character after the file name, I1f vo valid file name was present,
ES:DI+1 will point to a blank.

Miscellaneocus Funclions

0 - Program terwinate. The Terminate and Ctrl-C Exit addresses are,
raestored te the vaolues they had ou entry to the terminating program. All
file buffers are flushed, but files which have been -changed in length
but not closed will NOT be recorded properly im the disk directory.
Cantrol transfers to the Terminate address.

37 - Set vector. The interrupt type specified in AL is seb to vector to
the address DS:DX. See the 3ection on interrupt table usage for a list
of certain pre-defined lmterrupt types. :

38 - Create new program segment., On emtry, DX has the segment number at
which to set up a mew program segment. The entire 100 hex area at
location zero in the current program segment is copled into location
2er0 of the new program segment. The nemory size information at location
6 1s updated, and the current Terminate and Crrl-C Exit addresses are
saved in the new program segment starting at OA hex.

Page 15

290

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 17 of 42

Using Operaiihg System Functions

Disk File Reading and Writing

1t is strongly recommended that all disk 1/0 use the block read and
block write functions, Functioas 39 and 40, rather. than Functions 20,
21, 33, or 34. Since the block read and write functions update the
Random Record field of the FCB, they may be used for sequentlal access
as well as random, or any intermixing. Programs which would ordinarily
sequentially read or write one .record at a time might experience
congiderable improvement in performance if several records were buffered
instead of just one. The block 1/0 functions allew this buffer size to
be variable, deperding, for example, on available memory size.

The Line Editor: Function 10

The most straighfexward use of the editing [eatures provided by Function
10, buffered console input, is allowing the user to correckt mistakes iIn
the lire currently being entered, However, thelr are two other important
uses, both of which take advantage of the fact that a template way
already be present in the input buffer before the system call is wmade.

The simpler of the two 18 used by COMMAND -and all other standard 86-DOS
programs. By simply re-using the same buffer each time an input line I
requested, then the previous line entered becomes the template for the
LT new line. This allows the user to easily repeat a command, or to coxrect
B an error in the previous command. Or when used with a BASIC interpreter,
for example, the user could correct the last program lime entered’ (simce
the line number insures the old 1ine will be replaced), or the line
wumber could be changed eo that several similar lines could be entered
easily.

1F the program wishes Lo actively use the editing fearures, it may load
any arbitrary text into the’ buffer before requesting Funcriom 10. Note
that the second byte of the buffer must be set with the character count
and an ASCII carriage return must immediately follow the text in the
buffer. EDLIN, the text editor provided with 86-D0S, uses this method to
provide editing within a line. A BASIC interpreter with an EDIT command
could load the specified line Iato the buffer and let Funcrion 10 do the
rest. Any program in which there is a ftypical response’ at a given
moment could make the template this response to allow the user to select
it easily. .

It is important for any pragram that wishes to provide line editimg to
use the features of Function 10 to do so. This provides the user with a
set of editing eperations that are consistent from program to PLOEram,
and that have been tailored in one step CtO match the user’s terminal
(during 86-DOS customizing).

21 TR SITATRA

201

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 18 of 42

Running a User Program

The operating system core provides mno dfrect meane tO CUn user programs.
Instead, to run a given progranm represented by a disk file, the file
must be opened and read into memory uging the normal system functicms.
These functions are requesited by the user progranm that is currently
running.

The first user program to run is the fnicialization routine that follows
.a system beot, which normally loads and executes the file COMMAND.COM,
Thig is a user prograw that accepts commands from the console and
translates them into system function calls. COMMAND includes the
capability to load and execute other program filesj when these other
programs terminate, COMMAND regains control. Thus COMMAMD is responsible
for the initial conditions that are preseut when a-progran is executed.

A standard sct of initial conditioms is provided by COMMAND on'entry to
another program. It is possible for programs other than COMMAND to load
and execute program files, and they must also provide the same initial
conditions so that a consistent interface may be assymed by the newly
executing program. These inirial conditions are as follows:

All four segment registers have the same value, and the corresponding
absolute mewory address is the base of a "nrogram segment'. The program
{s loaded and begins execution at location 100 hex in the program
seguent. Other assipgnments in the program segment are:

00 ~ 0l: Termination point. Conrtains an interrupt type 20 hex, which
returns control to che originating program. Thus a JfP O or INT 20H are
the normal ways to terminate a progranm.

02 - 03: Memory size, Contains the first segment number after the end of
Memery.

05 - 05: Alternate Function request entry point. See “"Requesting a
Function".

06 — 07: Segment size. This is the numbex oF bytes available in the
program segnment.

08 — 21: Reserved.

22 - 5B; Default stack, The stack polnter is initially 5A hex, with a
word of zeros on the top. Thus executing a "rerura" fnstruction will
cause a transfer to location 0 and the progran will terminate normally.
This stack may be used as—1s, or a new one way be set up. Remember that

(lred = —-="
32 bytes of stack space are reqL;red Lo perform system calls.

5C - 67,
6C — 77: Formatted parameters. Each of these areas may contain a

&

Page L7

ki

292

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 19 of 42

RUNNING A USER PROGRAM {Continued)

parameter, usually a file name. The first byte of each area is zero
unless a disk drive is being specified, in which case l=drive A, 2=drive

B, ete. The rest is blanks if no parameter 1s present. No lower-~case
latters are allowed in these fields——they must be converted to upper

' case. If the parameter is a file name, then the next 8 bytes have the
name, followed by the 3~character extension. Thus each parsmeter is
properly formatted as an unopened FCB, except that the reserved area of
the First overlaps onto the second. If both parameters are used as file
names, the second one must be moved to a different area or it will be
destroyed when the first is opened.

i 80 — FF: Unformatted parameters, Any information to be passed may be
placed in this area. The disk transfer address is initially set te 80
hex. ;

COMMAND prepares the parameter areas from the console input line that
specified the program to be executed., For example, if COMMAND sees an
line of the form

<progname> <filel> <file2>

this is a request to execute the file <progname>.COM. <filel> and
<file2> each may or may not include a disk specifier or a file name
extension, but in any case they appear in the formatted parameters at 3C
hex and 6C hex. In additiom, the entire input line after rhe last letter
of <progname> appears Ian the unformatted parameter srea begimning at Bl
hex, with the number of characters placed at 80 hex.

=

Suppose the input lime is
COPY T.BAK B:TEST.ASH

‘The formatted parameter at Sé hex will contain
00 "T BAK"

at 6C hex will be
02 "TEST ASM"

and at 80 hex will be

17 " T.BAK B:TEST.ASH"

where the 17 is decimal.

g
)
m
[0l
:
[$-)
B

o

293

294

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 20 of 42

‘Customizing 86-DOS

Seiting the Special Editing ;:Commahds

The escape codes used by Function 10, buffered console input, can be set for

the convenience of the user. For each special editing command, two escape
codes are allowed. They ere set im a table starting at address 0003 in

B6-DOS. The beginning of 86-DOS looks like this:

Q000 Blotg INIT

0003 ESCTAB:

0003 ' DB “sc" i1Copy one character from template

0005 DB yny ;Skip over one character in template

0007 DB NTAY ;Copy up to specified character

0009 DB "B ;Skip up to specified character

0008 DB "gR" ;Copy rest of template

00D DB ' ;K111 line with no change in template (Cerl-xX)
000F 13);] YR sCancel line and update template

0011 nB v ;Backspace (same as Ctrl-H)

0013 DB 3tk ;Enter Inscxrt mode

0015 DB . "qu" ;Exit Insert mode

0017 DB 'IBH, 181 ;Escape sequence to represent escape character

Far example, the character sequences ESC 5§ or ESC C will copy one character
From the template ro the mnew line. Hote that there are three entries with the
same letter for both codes. This is simply a way to mske only one code
available for that function. '

The last entry in che table.is the escape sequence to be used to pass the ESC
character (IE hex). In the standard table shown here, this is done by typing
ESC twite, but it could also be set up for any other cscape sequence.

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 21 of 42

Customizing the /O Section

i In order to provide the user with maximum flexibility, the disk and simple
: device L/0 handlers of 86-DOS dre a separate subsysten which may be '
configured for virtually any real hardware. This I/0 system is located
starting at absolute address 400 hex, and may be any length. The DOS itself
is completely relocatable and normally stacts immediately after the I/0
system. .

Beginning at the very start of the 1/0 system (absolute address 400 hex) is a
series of 3-byte jumps (lomg intra—segment jumps) to various routimes within
the 1/0 system. These juuwps look like this:

0000 JMP TNIT ; System imitializatiom

0003 IMP STATUS ; Comsole status check
© 0006 JMP COMNIR ; Conscle input

goog QP CONOUT ; Comsole output

000C 2 PRINT ; Printer output

00.0F JMP AUXLIN s Auxiliary inmput

0012 2P AUXOUT ; Auxiliary output

0015 JHP READ ; Disk read

0018 JIF WRITE ; Disk write

0018 JMP FLUSH ; Empty disk buffers

The First jump, to INIT, is the entry point from the system boot. All the
rest are eamtry points for subroutines called by the DOS. Tater—segment calls
are used so that the code segment 18 always 40 hex (corresponding to absolute
address 400 hex) with a displacement of 3, 6, 9, etc. Thus each routine must
make an inter—segment return when done (RET L with our aszembler).

_J

The Funckion of each routine is as Follows:

INIT - System initialization

Entry conditions are established by the system bootstrap loader and should be

considered unknown. The following jobs must be performed:
”’
A. All devices are initialized as necessary. .

B. 4 local stack is set up and DS:SI are set to point to an initialization
table. Then an lnter-segment call is made to the first byte of the DOS, using
a displacement of zero. For example: :

MOV AX,CS ; Get current segment

MOV D5, AX

HOV 85,4X

HOV SP,STACK
MoV ST, INITTAB

CALL 0,DOSSEG

The inltialization table provides the DOS with information about the disk
system. The First byte is the number of drives (16 or fewer), followed by two
2-byte entries for each drive. The first of the two entries for each drive is
the address (in the same data segmentc) of a disk drive parameter table (DPT).
Similar drives may point to the same DPT.

! Page 20

295

296

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 22 of 42

CUSTOMIZING THE I/0 SECTIORN (Continued)

Below is a brief description of each eﬁtr§ of the DPT. The format of the DET
will be significantly different (easier to change) in Version 1.0 of 86-D0OS5,
and more informatiom will be available then.

1. Humber .of 128-byte records per physical sector. 1 byte.
2. Number of 128-byte records per allocation unit. 1 byte.
3. Number of reserved 128-byte records at beginning of disk. 2 bytes.

4. Size of allocation tahle, in 128-byte records, Each allocation wmit
({tem 7) reguires 1.3 bytes in the allocation table. 1 byte.

5. Number of allocation tables kept om the drive. 1 byte.

6. Number of 128-byte records devoted to the directory. There are 8
directory entries per record. 1 byte,

7. Numbar of allecation units on the drive. 2 bytes.

The second of the two entrizs for each drive is the displdcement of Ethe
allocation table for that drive. Wormally, the first drive will be given a
displacement of zero, and each subsequent drive will be assigued a space
irmediately after the previous drive’s table ends. The size of the table for
any drive is 128 bytes times the number of records specified in item 4 above.
Wote that mo space need be provided by the I/0 system for the allocation
tables; this space is assigned by the DOS during initislizatiom.

On the next page is a sample of an initialization table.

Page 21

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 23 of 42

CUSTOMIZING THE I/0 SECTION (Continued).

Below is a sample of a complete initialization table For four single-density
IBY format disk drives:

N INITTAB :
i

! DB. 4 ; Number of drives
; DW DRIVED
’ W ATO
Dy DRIVEL
ny ATl
it DRIVE2
ey AT2
DU DRIVE]
DW AT
DRIVEO:
DRIVEL:
DRIVE2Z:
DRIVE3:
; All drives are defined the same
DB 1 s Records/sectar
DB 4 ; Records/allocation unit
DH 52 ; Reserved records (two tracks)
: DB 4] s Allocation table slze, records
i DB 2 ; Number of allocation tables (1 backup)
! DB 8 ; Number of directory records (64 entries)
; DU 482 ; Mumber of allocatien umits (512 bytes ea.)
"'? ORG 0 ; Allocation tables are in their own segment
ATO: DS 3004 i Six 128-byte records
_ ATL: DS 300H
: AT2: DS 300"
, AT3: DS 300H

C. When the DOS returns to the INIT routine in the I/0 system, DS has the
segment of the start of free memory, where a program segmeunt has been set up.
The remaining task of INIT is to load and execute a program at 100 hex in
this segment, normally COMIAND.COM. The steps arxe:

1. Set the disk traunsfer address to DS:100H.

2, Open COMMAND.COM. Lf not on disk, report .error.

3. Load COMMAND using the block read function (Function 39). If
end~of=file was nct reeched, or if no records were read, report an
@TTOT,)

4. Set up the standard initial conditions and jump to 100 hex in the new
program segment.

Page 22

297

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 24 of 42

CUSTOMIZING THE 1/0 SECTION (Continued)
An example of code which performs this task is given:

MOV DX, 1008

HOV AH,26 s
INT 21H ;Set kransfer address bo pS: 1001
Muv ~ BX,DS ;Save segment for later
; DS must be set to CS so we can point to the FCH
MOV A¥X,CS
MOV D8, AX
MOV DX, FCB ;File Control Block for COMMAND.COM
MOV AH, 15
INT 214 :0pen COMMAND. COM
OR AL,AL
JUHZ COMERR 1Error 1f file not found
MOV [FCB+33],0 " ;Set Random Record field
MOV B, [FCB4+35],0
Hav CX,200H :Load maxinum records
HOV AH,39
INT 211 ;Block read
JCXZ COMERR sError if no records read
CMP AL, 1
JNZ COMERR ;Exror if not end—of~file
HOV Ds,BX ;A1l segment reg.s must be the same
Hov ES,BX
13002 8S,BX
HOV SP, 5CH ;Stack must be 5C hex
HOR AX, 8%
PUSH AX ;Put zero of top of stack
MOV DX, 801
HOV AH, 206
INT 211 ;Set transfer address te default
PUSH BX
MOV AY¥, 1004
PUSH AX X
RET L - iJump Lo COMPMAND
COMERR:
oV DX, BADCOM
MOV AH, 9 .
INT 214 ;Print error message
STALL: JfP STALL :Don’t know what to da
BADCOH : DB 13,10, "Bad or missing Command Interpreter’,13,10,"$"
FCB: DB 1,"COMMAND con"
DS 24

STATUS - Console input status

1f a character is ready at the console, this routine returns 2 non-zero
value in AL and the zero flag is clear. If no character is ready, AL
returns zero and the zero flag is set. Ho registers other than AL way be

changed.

Page 23

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 25 of 42

CUSTOMIZING THE I/0 SECTION (Continued)
CONIN - Comnscle input

Walt for a character from the console, then return with the character in

‘AL. No other registers may be changed.

>

CONOUT ~ Conscle outpﬁt

OQucput the character in AL to the console. No.registers may be affected.

PRINT - Printexr output

Output the character im AL to the printer. No registers may be affected.

- AUXIN -~ Auxiliary input

Wait for a byte from the auxiliary input device, then return with the
byte in AL. No other registers may be affected.

AUIDUT - Auxiliary output

Queput the byte in AL to the auxiliary output device. No registers may
be affected.

READ — Disk read
WRITE - Disk write

On entry,
AL = Drive number (starting with zero)
AH = Directory flag (WRITE only)
CX = Number of 128-byte records to transfer
DX = Logical record number

DS:BX = Transfer address.

The number of records specified are transfered betweeam the given drive
and the transfer address. "Logical record numbers” are obtained by
numbering each record sequentially starting from zero, and continuing
zeross track boundaries. Thus for standard floppy disks, for example,

Page 24

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 26 of 42

CUSTOMIZING THE I/0 SECTION {Continued)

logical record 0 is track O sector 1, and logical record 53 is track 2
sector 2. This counversion from logical record number Eto track and sector
is done simply by dividing by the number of records per track. The
quotient is the track number, and the remainder is the record on that
track. (If the first secctox on & track is | instead of 0, as with
standard floppy disks, add one to the remainder.}

"Sector mapping" is not used by this scheme, and is not recommended
unless contiguous sectors cannot be read at full speed. ILf sesctor
mapping is desired, however, it may be done after the logical record
number is broken down into track and sector. The 8086 imstruction XLAT
is quite useful for this mapping.

All registers except the segment registers may be desrroyed by these
routines. If the transfer was successfully completed, the routines
should return with the carry flag clear. If not, the carry flag should
be set, and CX should have the nuuber of records remaining to be
rravsfered (including the record in error).

on disk writes only, register AH 1is zeT0 for normal writes and non-zero
for directory writes. Thus if disk I/u is being buffered in wemory, as
would be the case 1f physical sector size is greater than 128 bytes,
then this memory buffer must be flushed to disk when AH is non-zezo to
insure the directory is updated. Version 1.0 of 86-D0S will
automatically handle physical sector sizes larger than 128 bytes and
buffering in the I/0 area will no longer be necessary.

FLUSH - Empty disk buffers

This routine is called when a file is closed or when the disk system is
reset. Lt may be used to write to disk any disk buffers that have been
kept in mewory. On entry, &L has the drive number whose buffers should
be Flushed, or if AL = -1, then flush all buffers. All registers may be
destroyed except the segment registers., If memory buffering is not used,
this routine may simply return (inter—segment).

Varsion 1.0 of 86-DOS will automatically handle physical sector sizes
larger tham 128 bytes and this routine will no longer be used.

Page 25

300

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 27 of 42

Bootsirap Loader Listing

:This 1s a disk boot routine for the 1771/1791 type disk
scontrollers. It would normally reside om track O,
ssector 1, to be loaded by the "B" command of the
smonitor ar address 200H. By changing the equates
;below, it may be configured to load any eize of
;program at any address. The prograw is assumed to

3 ocecupy consecutive sectors gtarting at track 0, sector
$2, and will begin exection at its leoad address (which
smust be a 16-byte boundary) with the Instruction
jPolnter set to zero.

; Variations are available for the Cromemec 4FDC with
: large disks, the LFDC with small disks, tha Tarbell
; single—~density controller, and the Tarbell double—
; density controller. Select one.

CROMEMCOSMALL: EQU 0
CROMEMCOLARGE: EQU” 0
TARBELLSINGLE: EQU 1
TARBELLDOUBLE: EQU 4}
LOAD: EQU 400H sAddress to load program
SEG: EQU 40H :LOAD /10H
SECTOR: EQU 51 sNo. of 12B-byte sectoxs to load
BOOTER: EQU 2008 ;"B" command puts booter here
} ;tk**************k*****************k*k***********k******kk*k***
CROMEMCO: EQU CROMEMCOLARGEACRONMEMCOSMALL
TARBELL: EQU TARBELLSINGLE+TARBELLDOUBLE
WDi771: EQU CROMEMCO+TARBELLSINGLE
WD1791: EQU ‘TARBELLDOUBLE
SMALL: EQU CROMEMCOSMALL
LARGE: EQU CROMEMCOLARGE+4TARBELL
IF SMALL
. 1HAXSECT: EQU 18
: ENDIF
i
i IF LARGE ~
| HAXSECT : EQU 26
| ENDIF
|
| IF TARBELL
'DONEBLT:EQU 80U
1 DISK: EQU 784
; ENDIF
IF CROMEMCO
DONEBIT:EQU 1
DISK: EQU J0H
ENDIF
Pege 26

301

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 28 of 42

: B BOOTSTRAP LOADER LISTING (Continued)
% IF w1771
READCOM : EQU 88H
1 % ENDIF
IF Wpl791
5 READCOH: EQU 808
ENDIF
: IF CROMEHMCOLARGE
% WALTBYTE :EQU OB1H
EMDIF
@ IF CROMEHCOSHALL
WAITBYTE:EQU OA L
ENDIF
% OnRG BOOTER
FUT 100"
% X0R AX, AR
13(00 DS,AX
MOV ES,AX
@ HOV 88,AX
MOV SP,BOOTER ;For debugging purposes
L) 4
MOV DI,LOAD
HOV DX,SECTOR
HOV BL,Z
SECT:
MOV AL, ODOH ;Force Interrupt command
ouT DISK :To force Type I status
AAN }
cMP BL ,MAXSECT+L
JHz HOSTEP)
HOV AL, 581 - ;Step im with update
CALL DCOM .
nov BL, 1
NOSTEP:

MOV AL,BL
OUTB DISKH+2

IF CROMEMNMCO

MOV AL,WAITBYTE)

ouT DISK+4 ;Turn on hardware wait
ENDIF

INB DISK ;Get head load status
NnoT AL

AND AL, 20H

JZ QUTCOL

Hov AL, &

Page 27

SRR
TR
5

302

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 29 of 42

BODTSTRAP LOADER LISTING (Continued)

OUTCOM:
OR AL, READCOM
oUTB DISK
" MoV CX, 128
: PUSH DI
READ:
INB DISK+4
TEST AL,DONEBILT
IF TARBELL
J7 DONE
ENDIF
IF CROMEMCO
JNZ DONE
ENDIF
INB DISK+3
STOB)
LOOP READ
DONE:
POP DI
CALL GETSTAT
AND AL, 9CH
JNZ SECT
. ADD pI,128
A" INC BL
/ DEC Px
JHZ SECT
JHP 0,SEG
DCOM:
0UT DISK
ABM
GETSTAT: .
INB DISK+4 °
TEST AL ,DONEBIT
IT TARBELL
JKZ GETSTAT
ENDIF
IF CROMEMCO
Jz GETSTAT
ENDIF
N DISK
RET
{
* Page 28

B Zoegad

303

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 30 of 42

1/O Section Listing

; 1/0 System for 86-DOS.

: Assumes a CPU Supp&rt card at ¥0 hex for character 1/0,
; with disl drivers for Tarbell or Cromemco controllers.

. Select disk controller here

¥

TARBELL : BQU 1
GROMENCO:EQU @

; For either disk controller, a custom drive table may be defined

cusTOM: EQU 0

3 If Tarbell disk controller, select one-sided or two—~sided drives
s and single or double density controller

DOUBLSIDE:EQU O

DOUB2SIDE:EQU 0

SNGLISIDE:EQU 1

s If Cromemco disk controller, select drive configuration

SMALLCRO: EQU 0 ;3 small drives
COMBCRO:EQU 0 :2 large drives and 1 small one
LARGECRO:EQU o ;4 large drives

;Use table below to select head step speed. Step times for 5" drives is double
sthat shown in the table. Times for Fast Seek mode (Cromemco controller with
sPerScd drives) is very small - 200-400 microseconds:

Step value 177} 1791

<

3 1] fns 3ms
3 1 bms bms
H 2 10ms 1Qnms
H 3 20ms 15ms
STPSPD: EQU 1

;Some drives require a delay between writing and stepping so that the tunnel
;erase operation does not smear across data. If needed, set ERASE to 1 and
;set WRTDLY for the amount of the delay (software loop). For a given delay in
:microseconds, WRTDLY = (delay * B) / l8.

ERASE: EQU L
WRTDLY: EQU 236 ;536 microseconds

Page 29

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 31 of 42

1/0 SECTION LISTINC (Continued)

:Some disk drives cannot be driven at full speed (6 tracks/sec), even if the
;£ull head step delay is used. To slow them down, a "verify" can be performed
;after each head step during a contipuons read or write operation. Select by .
1setting VERIFY to VERON, disable with VEROFF.

VERON: EQU STPSPD+4
VEROFF: EQYU 0
VERIFY: EQU VERON

3 'k************:‘:**********kk**?‘.’***********:\'***t************’k* kkhkkhhtkikddhkihd

WDl791: EQU DOUB 1SIDEHOUB25IDE

WDL771: EQU CROMEMCO+SHCL 1SIDE
IF w1791
READCOM: EQU 80H
WRITECOM:EQU QAOH
ENDIF
IF WDpl771
READCOM s EQU 88H
WRITEGOHM: EUD 0A8H
ENDIF
iF TARBELL
b DONEBIT : EQU 80H
— DISK: EQU 784
/ ENDIF
1F CROMEMCO
DONEBIT: EQU 1
DISK: EQU 300
ENDIF -
DOSSEG: EQU 808 -
ORG 0
PUT 1008
BASE: EQU OFOH
STAT: EQU BASE+7
DAV: EQU 2 .
TBMP: EQU 1
DATA: EQU BASE+6
PSTAT: EQU BASE+ODH
PDATA: EQU BASEHOCH
QP INTT
JMP STATUS
JMP INP
JMP OUTP
2P PRINT
JMP AUXIN
¢ Page 30 .
; 4

305

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 32 of 42

I1/0 SECTION LISTING (Continued)

JP AUROUT

Jip READ

e WRITE

JMP RETL ;Flush buffers

INIT:
? MOV AX,CS ;Get current segment
Hov DS, AX
MOV S5,AX
% HOV §P,STACK
MOV SI,INITTAB
CALL 0,DOSSEG
MOV DX, L00H
@ MOV AH,26 sSet DMA address
! INT 21H
MOV BX,DS ;Save segment for later
@ :DS must be set to CS so we can point ro the FGE
HOV AX,CS

MOV DS5,AX
HOV DX,FCB ;File wuntrol Block for COMMAND.GOM
MOV AH,15
TAT 214 :Open COMMAND.COM
OR AL,AL
JNZ COMERR sError if flle not found
HOV [FCB+331,0 ;Set 3-byte Random Record field to
___& Hov B, [FCB+35]},0 H beginning of file
i }@ MOV CX, 2008 ;Load maximum records

MOV Al, 39 sBlock read
INT 21H
JCXz COMERR ;Error if no records read
CHP AL, L
JNZ COMERR : :Error if not end~of~-file

sMake all segment registers the same
MOV DS, BX X
HOV ES,BX:
MOV S5,BX
MoV sp, 5CH ;Set stack to standard value
XOR AX,AX
pUSH AX ;Put zero on top of stack for return
MoV DX, 80H
HOV AH, 26
INT 2147 ;Set default transfer address (pS:0080)
PUSH BX +Put segment oo stack
HOV AX, 100H
PUSH AX ;Put address to execute within segment onr stack
RET L ;Jump to COMMAND

COMERR:
HOV DX, BADCOM
HOV AlLLD sPrint string
INT 2181
EX

STALL: JP STALL

Page 31

Py

.
;

¥ - BRI
1:

306

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 33 of 42

BADCOM: DB
FCB: -DB
DS

STATUS:

IR
AHD
RET

AUXIN:
JIND:
IR

Jz
N

RET

AUZOUT
OUTr:

PUSH
OUTLP:

N

AND

Jz

POP

ouT

PRINT?

PUSH
PRIRLP:

IN

PO?P
ouT
RET

RE4D:
CALL
Jc
RDLP:
PUSH
CALL
QP
JC
IRC
ADD
LOO?
oR
RETL: RET

Fage 32

307

I/0 SECTION LISTING (Continued)

13,10,"Bad or missing Command Interpreter™,13,10,"§"
1, COMMAND coM"
24

STAT
AL,DAV

STAT -
AL,DAV
me
DATA
AL, 7JFH

STAT
AL, TBMT
OUTLP

DATA

AX

PSTAT
AL, TBMT
PRINLP
AX .
EDATA

L

SEEK ;Pogition head
ERROR

cX

READSECT iPerform sector read

cX

ERROR

DH ;Next sector number

SI,128 sBump address for next sector
RDLP ;Read each sector requested
AL AL

L

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 34 of 42

1/0 SECTION LISTING (Continued)

WRITE:
. CALL
"Je
WRTLP:
PUSH
CALL
POP
JC
INC
ADD
L0o0P
on
RET

ERROR:
SEG
HOV
RET

Inputs:
AL =

DX =
Function:

Qutputs;
Al
DL
DR
SL
DL

WS ME We WE ¥ WO wa Y we Vs W v

TR
1

MoV
CBW
HOV
SEG
Hov
out

IF
OR
ENDIF

HOV
XCHG
HOV

IF
TEST
JNZ
HOV

SEEK
ERROR

cxX
WRITESECT
cX

ERROR

DE

81,128
WRTLP
AL,AL

L

CS
B, mI]v—l
L

Drive number

;Position head

«

;Perxform sector write

sBump sector counter
sBump address
sWrite CX sectors

BX = Disk transfer address in 2 1]
CX = Humber of sectors to transfer

Logical record number of transfer

seeks to proper track.

Drive select byte

Track number
Sector number

Disk traasfer address in DS
pointer to drive’s track counter in C3

¢X unchanged.

SI,BX

BX,AX

cs

AL, [BX+DRVTAB]
DISK+4

CROMERICO
AL, 80H

Al, AL
AX,DX
DL, 26

CROMENCO
Dii, 10H
BIGONE
DL, 18

; Save transfer address

; Prepare to index on drive number

; Select drive
$Set auto-walt bit

;Save for later

126 sectors per track

;Check 1f small disk

;18 sectors on small disk track

Page 33

309

TR A -

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 35 of 42

1/0 SECTION LISTING (Continued)

BIGONE:
ENDIF
bIV AL,DL sCompute track and sector
XCHG AX, DX .
INC DH ;First sector is 1, mot zero
SEG cs
Hov BL, [BX+TRKPT] :Get this drive’s displacement into track table
ADD BX, TRKTAR ;BX now polnts to track ecounter for this dxive
oV D1,BX
MOV AL ,DL
SEC cs
XCRG AL, [DT] sXchange curreat track with desired track
ouUT DISK+L ;Inform controller chip of current track’
GMP AL,DL
JZ ONTRK
MOV BH,3 sSeek retry count
ce AL,~1 iHead position known?
JNZ NOXOHE s1f not, home head
TRYSK:
CALL HOME
NOHOME:
HOV AL,DL
0uT DISK+3
MOV AL, 1CH+STPSFD
CALL PMOVREAD
AND AL, 98H
JZ ORTRK
DEC BH
JRZ TRYSK
STC -
ONTRK:
RET
SETUP: :
MOV Al,, ODOH sForce Interrupt command
Dur DISK ;50 Type I status will be available
PUSH AX
AAM sPause 10 microseconds
POP AX
IF CROMEMCO
TEST AH, 1OH iCheck for small disk
JNZ CHKSTP
cHep DH, 18 ;Only 18 sectors/track on small ones
JA STEP
CHXSTP: .
ENDIF
Clp DH, 26 ;Check for overflow onto next track
JRE PUTSEC
Page 34

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 36 of 42

% I /0 SECTION ‘LISTING {Continued)
§ STEP:
’ INC DL
MOV DH,1
5 MoV AL, 58HAVERIFY ;Step in with update
CALL ' STPHEAD
SEG cS
INC B, [DI] sUpdate track counter
@ PUTSEC: :
MoV AL,DH .
a 0uUT DISK+2
» IF CROMEMCO
MOV AL, AR
OuT DISK+4 ;Tura cn 2uto-wait
@ ENDIF
IN DISK ;Get head load bit
NOT AL
AND AL, 201 sCheck head load status
Jz CHKDRY
MOV AL, 4
CHKDRV:
; Turn on 15ms head load delay if selecting a different drive
SEG cs
CHP AH, {CURDRV]
SEC cs
MOV [CURDRV] , AH
Jz RET
MOV AL, 4
RET
READSECT:
CALL SETUP
MOV 3L.LO
RDACN: :
OR AL, READGOM
ouT DISK
MOV CX, 80H
PUSH SI
TLOOP:
IN DISK+4
TEST AL,DONEBIT
IF TARBELL
JZ RDONE
ENDIF
IF CROMENCO
JKZ RDONE
EMDIF
IN DISK+3
HOV {S1},AL
INC SI
LOOP PLOOP
!_ f}g Page 33
s

310

3 ' ia IETTF
. 4

311

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07

L/0 SECTION LISTING (Continued)

RDONE: .
POP SX
CALL GETSTAT
AND AL, 9CH
JZ RET
MOV AL, O
DEG BL
JNZ RDAGN
STC
RET
VRITESECT:
CALL SETUP
MoV BL, 10
WRTAGN
OR AL, WRITECOHM
ouT DISK
Hov CX, BOH
PUSH ST
YRLOOP:
iN DISK+4
TEST AL,DONEBIT
IF TARBELIL
Jz {EDONE
ENDIF
IF CROMERCO
JHZ HWEDONE
ENDTF
1LODB
ouT DISK+3
LooP {#RLOOP
WRDONE :
POP) S
CALL GETSTAT"
AND AL, DFCH
Jz RET
MOV AL,O
DEG BL
JNZ HRTAGH
STC .
RET
HOME:
IF CROMEMCO
TEST AN, 401 ;Check seelk speed bit
JNZ RESTORE
ENDIF
Hov RL,3
Page 36

Page 37 of 42

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 38 of 42

TRYHOM:

HOV
CALL
AND
JZ
MOV
CALL
DEC
JRZ
RET

MOVHEAD :
IF
TEST
JHZ
ENDIF

STPHEAD:
IF
pusn
1oV
DLYLP:
DEC
JNZ
POY
ENDIF

DGO -
ouT
PUSH

AAM
PoP

GETSTAT:
I
TEST

IF
JRZ .
ENDIF

IF
JZ
ENDIF

IN
RET

IF
RESTORE:
MOV
outT
oV
oUT

312

I/0 SECTION LISTING (Continued)

AL, OCH4STPSPD
STPHEAD

AL, 98I

RET

AL, S5BH+STPSPD
DcoM

BL

TRYROMH

sStep in with update

CROUEMCO
A, 4GH
FASTSK

sCheck seek speed bit

ERASE
AX
AX, WRTDLY

AX
DLYLP
AX

DISK
AX
;Delay 10 microsecounds

aX

DESK+4 .
AL,DONEBIT

TARBELL
GETSTAT

CROMENCO
GETSTAT

DISK

CROMEMCO

AL, 0C4H
DISK
AL, 77H
4

;READ ADDRESS command to keep head loaded

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 39 of 42

1/0 SECTION LISTING (Continued)
CHKRES:
, IN 4
AND AL, 401
JZ RESDONE
IN DISK+4
' TEST AL,DONEBIT
JZ CHKRES
IN DISK
JP RESTORE sReload head
RESDONE:
MoV AL, 7FH
ouT 4
CALL GETLSTAT
MOV AL,O
oyT DISK+1 3Tell 1771 we're now om track O
RET
FASTSKs
MOV AL, 6FH
ouT 4
MOV AL, 18H
CALL DCO
SKUAIT:
IN &
TEST AL,40H
JNZ SKUAIT
MOV AL, 7FE
ouT 4
—? Hov AL, O
RET
ENDIF
DS 200
STACK:
LFAT: EQU 3001 .
SFAT: EQU 200H
CURDRV: DS 1
LDRIVE:
DB 1 sRecords/gector
DB 4 ;Records/cluster
DU 52 :Reserved records
DB 6 sFAT size (records)
DB 2 sNunber of FATs
D3 8 sNumber of directory records
s 482 sHumber of clusters on drive
Page 38

son age e —emro

313

—_———— A

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07

1/0 SECTION LESTING (Continued)

SDRIVE:
DB
DB
o
DB
DB
DB
Dy

IF
DRVTAB: DB
TRKPT: DB
TRKTAB: DB

ENDIT

IF
DRVTAB: DB
TRKPT: DB
TRKTABR: DB

ENDIF

IF
DRVTAB: DB
TRKPT: DB
TRKTAB: DB

ENDLF

IFr
LHITTAR:DB
DU
oy
DW
bW
Dy
DW
Dy
DW

ORG
FATO: D&
FATI: DS
FAT2: DS
FAT3: DS

ENDIF

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

ME W) Ve wr v vy ME ur

us

SN WS oy

=

o

L3I0 DD I tn N
P

25

DOUB 1SIDE

0, 108, 204, 308
0,1,2,3
~L1y=1,~1,~1

DOUB 28 IDE
0, 401, 108, SO
0,0,1,!

~1,~1

SNGL1STDE

OF2H, OE2H, 0D 21, 0COH
0,1,2,3

-1,~1,=1,~L

TARBELL ’

A sNumber of drives
LDRIVE

FATO

LDRIVE

FATl .

LDRIVE

FAT2

LDRIVE.

FAT3

0

LEAT
LFAT
LFAT
LFAT

Cromenco drive select byte is dexived as follows:

1f fast seek (PerScil)
{(motor on)

for 5, 1 for 8" drives
for drive 3

for drive 2

far drive 1

for drive O

o e b O R e O

Page 40 of 42

Page 39

TR

o

315

Case 2:05-cv-01719-TSZ Document 14-8 Filed 03/15/07 Page 41 of 42

1/0 SECTION LISTING (Continued) .

IF LARGECRO
s Table for four large drives '
DRVTAB: DB 71d, 72H,74H, 78H
TRKPT: DB 8,0,1,1
TRKTAB: DB -1,-1 .
TNITTAB:DB 4 ;Humber of drives
W LDRIVE
D FATO
D LDRLVE
bW FAT1
oy LDRIVE
h2iof FAT2
it LDRIVE
Dy FAT3
ORG 0
FATO: DS LFAT
FATLI: DS LFAT
FAT2: ns LFAT
FAT3: DS LFAT
ENDIF
Ir COMBCRO
;{ Table for two large drives and one small ane
DRVTAB: DB T1H, 728, 24R
TRKPT: DB 0,0,1
TRETAB: DB ~1,~1
INITTAB:DR 3 sHumber of drives
pit) LORIVE
DR FATO
DW LDRIVE
g FAT1
oy SDRYVE
Dy FAT2 ¢
019 0
FATO: DS LFAT
FATl: DS LFAT
FATZ: DS STAT
ENDIF

Page 40

316

K K EKE AR XK ZE N]

Case 2:05-cv-01719-TSZ Document 14-8

. 1/0 SECTION LISTING (Gountinued)

IF SMALLCRO
; Table for 3 small drives
DRVTAB: DB 21H, 224, 24H
TRKPT: DB 0,1,2
TRKTAB: DB ~1,~1,-1
INITTAB:DB 3

hing SDRIVE

bW FATO

oW SDRIVE

it FAT1

DH SDRYVE

jiit] FAT2

ORG ¢
FATO: DS SFAT
FATl: DS SFAT
FAT2: B8 SFAT

ENDIF

IF CUSTOM
; Table for 2 large drives without fast seek
DRVIAB: DB 31n,320
TRKPT: DB 0,1
TRKTAR: DB ~1,~1
INITTAB:DB 2

oy LDRIVE

Dy FATO

oW LDRIVL

hrits FATL

ORG 0
FATO: DS LFAT
FAT1: DS LFAT

ENDIF .

Filed 03/15/07

Page 42 of 42

Bage 4L

