EXHIBIT M

Programmer's Manual

Version 0.3

i

86-DOSTW

Disk Operating System for the 8086

Preliminary

86-DOS®

Programmer's Manual

TABLE OF CONTENTS

. 3
. 3
. 4
. 6
. 7
. 7
15
כו
16
17
19
19
19
20
26
26
29

COPYRIGHT 1980 by Seattle Computer Products Inc. All rights reserved.

Programming Guide.

Operating System Calls

The purpose of the operating system core is to provide a high-level, hardware independent interface between a user program and its hardware environment. Most functions that the user may request can be grouped into two categories: simple device I/U and disk file I/O.

The simple I/O functions are:

Input console character
Output console character
Input from auxiliary
Output to auxiliary
Output to printer
Output character string to console
Input Buffered line from console
Check console for input character ready

The disk I/O functions include:

Reset disk system
Select default disk
Scan disk directory
Create file
Open file
Close file
Delete file
Rename file
Read/Write file record(s)
Set disk transfer address

Summary of 86-DOS Functions

Ma	Europies	Inputs	Outputs	Page	_
No.	Function	Imputs	outputs	rage	
0	Program terminate	None	None	15	_
1	Console Input	None	AL = Character	7	
2	Console Output	DL - Character	None	7	
3	Auxiliary Input	None	AL = Character	7	
4	Auxiliary Output	DL = Character	None	8	
5	Printer Output	DL = Character	None .	8	
6	Direct Console I/O	DL = OFFH or DL = Character	AL = Char. if read AL = 0 if not read None	•	
9	Quput String	DS:DX = String	None	8	
10	Input String	DS:DX = Buffer	None	8	
11	Check Console Status	None	AL = OFFH if ready AL = 0 if not read		
13	Disk System Reset	None	None	11	
14	Select Default Drive	DL = Drive	AL = No. of drives	11	
15	Open File	DS:DX = FCB	AL = Error flag	11	
16	Close File .	DS:DX = FCB	AL = Error flag	11	
17	Search for First	DS:DX = FCB	AL = Found flag	12	
18	Search for Next	DS:DX = FCB	AL = Found flag	12	
19	Delete File	DS:DX = FCB	AL = Found flag	12	
20	Sequential Read .	DS:DX = FCB	AL = Error flag	12	
21	Sequential Write	DS:DX = FCB	AL = Error flag	12	
22	Create File	DS:DX = FCB	AL = Error flag	12	
23	Rename File	DS:DX = Modified FCB	AL = Found flag	13	
25	Get Default Drive	None	AL = Default drive	13	
26	Ser Disk I/O Address	DS:DX = I/O address	None	13	

SUMMARY OF 86-DOS FUNCTIONS (Continued) DS:BX = Address 13 27 Allocation Address DX = Disk size AL = Block size DS:BX = Address 13 None 31 Parameter Address AL = Error flag 13 DS:DX = FCB33 Random Read 13 DS:DX = FCB AL = Error flag 34 Random Write 13 AL = Error flag DS:DX = FCB 35 Get File Size 14 None DS:DX = FCB Get File Address 15 DS:DX = Vector address Set Vector AL = Interrupt type 15 DX = Segment number None Create Segment AL = Error flag 14 DS:D% - FCB Random Block Read CX = Record count 14 AL = Error flag DS:DX = FCB Random Block Urite CX = Record count 15 SI updated DS:SI = Input line 41 Parse File Name ES:DI = FCB AL = 0 (no pre-scan) AL = 1 (scan separators)

1

Interrupt Table Usage

The first LK of memory, absolute address 00000 to 003FF hex, is reserved by the 8086 for the interrupt table. Within this table, locations 00080 to 000FF, which correspond to interrupt types 32 to 63 hex, are reserved for 86-DOS. Specific interrupt types have been defined as follows:

32 - Program terminate. The Terminate and Ctrl-C Exit addresses are restored to the values they had on entry to the terminating program. All file buffers are flushed, but files which have been changed in length but not closed will not be recorded properly in the disk directory. Control transfers to the Terminate address.

33 - Function request. See "Requesting a Function", below.

34 - Terminate address. On entry to a program, this is the address to which control will transfer when the program terminates. This address is copied into low memory in the program segment when it is created by Function 38. A program may change this address, but this does not affect what happens when it terminates, since the Terminate address is restored from the copy in the program segment. If the program executes a second program, it must set the Terminate address to the location that the second program will transfer to on termination.

35 - Ctrl-C Exit address. If the user at the console types Ctrl-C during console input or output, an interrupt type 35 hex is executed. If the Ctrl-C routine preserves all registers, it may end with a return-from-interrupt instruction (IRET) to continue program execution. If the Ctrl-C handler does nothing but an "IRET", Ctrl-C will appear to have no effect.

If the program executes a second program which itself changes the Ctrl-C Exit address, then on termination of the second program and return to the first, the Ctrl-C address is restored to value it had before the second program changed it.

36 - Hard Disk Error Exit address.

37 - Absolute disk read. Control transfers directly to the I/O system disk read routine. On return, the original flags are still on the stack (put there by the INT instruction), which is necessary because return information is passed back in the flags. Be sure to pop the stack to prevent uncontrolled growth.

38 - Absolute disk write. See above.

Page 6

Requesting a Function

The user program requests a function by putting a function number in the AH register, possibly setting another register according to the function specifications, and performing an interrupt type 33. The user's stack must have a total of 16 levels (32 bytes) of space available before performing the interrupt, which will insure compatibility with future multi-user versions of 86-DOS. When 86-DOS takes control it saves all the user's registers except AL and switches to an internal stack. Thus all registers, including the flags but excepting AL, will be unchanged on return unless noted otherwise in the function specification.

Those functions whose numbers are 36 or less are also available through a different call mechanism. The function number is placed in the CL register, any other registers are set in their usual way according to the function specifications, and a normal 3-byte (intra-segment) "call" is made to location 5 in the current code segment. Register AX is always destroyed by this calling method, but otherwise it is the same as the normal (interrupt) method. This form is provided to simplify translation of 8080/Z80 programs into 8086 code, and is not recommended for new programs.

Simple Device I/O Functions

1 - Console input. Waits for a character to be typed on the console, then echos the character (as in Function 2) and returns it in AL. The character is checked for a control function as described in Function 2 below.

2 - Console output. The character in register DL is output to the console. The parity bit (bit 7) must be zero unless a special terminal function is desired. Tabs are expanded in columns of 8. Rubout (7F hex) is output but is not counted in tab counting. After output, the console is checked for a control function:

Ctrl-S suspends everything until any key is typed.

Ctrl-P sends all console output to the printer also.

Ctrl-N stops sending output to the printer.

Ctrl-C causes an interrupt to the Ctrl-C address.

3 - Auxiliary input. Waits for a character from the auxiliary input device, then returns that character in AL.

SIMPLE DEVICE I/O FUNCTIONS (Continued)

- 4 Auxiliary output. The character in DL is output to the auxiliary output device
- 5 Printer output. The character in DL is output to the printer.
- 6 Direct Console I/O. If DL is FF hex, then AL returns with a console input character if one is ready, otherwise OO. If DL is not FF hex, then DL is assumed to have a valid character which is output to the console.
- 9 Print string. On entry, DS:DX must point to a character string in memory terminated by a "\$" (24 hex). Each character in the string will be output to the console in same form as Function 2, including subsequent status check.
- 10 Buffered console input. On entry, DS:DX point to an input buffer. The first byte must not be zero and specifies the number of characters the buffer can hold. Characters are read from the console and placed in the buffer beginning with the third byte. Reading the console and filling the buffer continues until carriage return is typed. If the buffer fills to one less than maximum, then additional console input is ignored until a carriage return is received. The second byte of the buffer is set to the number of characters received excluding the carriage return (OD hex), which is always the last one.
- A number of control functions are recognized while reading the console:
 - Tab, Ctrl-S, Ctrl-P, Ctrl-N, Ctrl-C have the same effects as listed under Function 2.
 - Rubout, delete, backspace, Ctrl-H (7F hex or 08 hex): Backspace. Removes the last character from the input buffer and erases it from the consule.
 - Linefeed, Ctrl-J (10 hex): Physical end-of-line. Outputs a carriage return and linefeed but does not effect the input buffer.
 - Ctrl-X (18 hex): Cancel line. Outputs a back slash, carriage return, and linefeed and resets the input buffer to empty. The template used by the special editing command is unchanged.

SPECIAL EDITING COMMANDS. A number of special editing commands are available to the user entering a line at the console. All of these involve a "template", which is a valid input line available to the user for modification. There are two ways to obtain a template.

If the input buffer already contained a valid input line on entry to Function 10, then this is a template. A valid input line is one in which the character

[:] Page 8

SIMPLE DEVICE I/O FUNCTIONS (Continued)

recount at the second byte of the buffer is less than the buffer length, and a carriage return (OD hex) immediately follows the text in the buffer. Note that a buffer that has previously been used for input and has not been modified will meet these requirements.

The user at the console may also create a template. One of the editing commands is to convert that part of the line entered so far into the template, and restart the line entry. This allows an error near the start of a line to be corrected without retyping the rest of the line.

Each editing command is selected by typing ESCAPE and a letter. Since many terminals provide keys which produce such an "escape code" with a single keystroke, the letter used after the ESCAPE may be set for each command during 86-DOS customization. The standard escape sequences correspond to the special function keys of a VT-52 or similar terminal, as noted in each case by parentheses.

ESC S (F1) - Copy one character from the template to the new line.

ESC T (F2) - Must be followed by any character. Copies all characters from the template to the new line, up to but not including the next occurrence in the template of the specified character. If the specified character does not occur, nothing is copied to the new line.

ESC U (F3) - Copy all remaining characters in the template to the new line.

ESC V (F4) - Skip over one character in the template.

ESC W (F5) - Must be followed by any character. Skips over all characters in the template, up to but not including the next occurrence in the template of the specified character. If the specified character does not occur, no characters are skipped.

ESC P (BLUE) - Enter insert mode. As additional characters are typed, the current position in the template will not advance.

ESC Q (RED) - Exit insert mode. The position in the template is advanced for each character typed. When editing begins, this mode is selected by default.

ESC R (GRAY) - Hake the new line the template. Prints an "@", a carriage return, and a line feed. Buffer is set to empty and insert mode is turned off.

11 - Check console status. If a character is waiting at the console, AL will be FF hex on return. Otherwise, AL will be 00.

Disk I/O Functions

Disk files are identified by a disk drive code, a file name of up to 8 characters, and an extension of up to 3 characters. The drive code may explicitly specify a drive, or the default drive may be used. Case is irrelevent in the file name or extension, since only upper case is used internally. If the file name or extension includes a question mark ("?") in any position, then that position will match any character. Thus a single file name with embedded question marks may match more than one directory entry.

Generally, functions operating on disk files will use a File Control Block, or FCB. The FCB is a 33- or 36-byte segment of memory with information about a file, formatted as follows:

BYTE O - Drive Code. Zero specifies the default drive, 1-drive A, 2-drive B, etc. Note that other functions which use a drive number use 0-drive A, 1-drive B, etc.

BYTES 1-8 - File Name. If the file name is less than 8 characters, the name must be left justified with trailing blanks.

BYTES 9-11 - Extension. If less than 3 characters, must be left justified with trailing blanks. May also be all blanks.

BYTES 12-13 - Current Block. This word (low byte first) specifies the current 16K block, relative the start of the file, in which sequential disk reads and writes occur. If zero, then the first 16K of the file is being accessed; if one, then the second 16K; etc. Combined with the current record field, byte 32, a particular 128-byte record is identified.

BYTES 14-31 - Reserved for system use once the file is opened and until it is closed.

BYTE 32 - Current Record. Identifies the record within the current 16K block that will be accessed with a sequential read or write function.

BYTES 33-35 - Random Record. This 24-bit number (low byte first) need be present only when the file is accessed with a random read or write function. It is the position in the file of a 128-byte record.

Notice that there are two ways to address a record within a file. The Current Block and Current Record fields together address a record when the file is accessed with the sequential read and write functions. The Random Record field addresses a record when the file is accessed with the random read and write functions. The appropriate fields may be set before either a sequential or random transfer to select the next record to be accessed.

Page 10

An unopened FCB is one in which only the first 12 bytes have been filled in, i.e., name and drive code. An opened FCB is one that has been through a successful open or create operation (Functions 15 or 22) and has its Random Record or Current Block/Current Record fields set as necessary.

13 - Disk reset. Selects drive A as the default drive, sets the disk transfer address to DS:80 hex, and flushes all file buffers. Files which have been changed in size will not be properly recorded in the disk directory until they are closed. This function need not be called before a disk change if all files which have been written to are closed.

14 - Select disk. The drive specified in DL (0=A, I=B, etc.) is selected as the default disk. If the DL does not represent a valid drive number, then the default drive is not changed. In either case, AL returns with the number of drives.

15 - Open file. On entry, DS:DX point to an unopened FCB. The disk directory is searched for the named file and AL returns FF hex if it is not found. If it is found, AL will return a OO and the FCB is filled as follows:

If the Drive Code was zero (default disk), it is changed to actual disk used (A=1, B=2, etc.). This allows changing the default disk without interfering with subsequent operations on the file.

The Current Block field is set to zero.

All remaining fields, up to but not including the Current Record field, are filled with system information. It is the calling program's responsibility to set the Current Record or Random Record fields as necessary.

16 - Close file. This function must be called after file writes to insure all directory information is updated. On entry, DS:DX point to an opened FCB. The disk directory is searched and if the file is found, its position is compared with that kept in the FCB. If the file is not found in its correct position in the directory, it is assumed the disk has been changed and AL returns FF hex. Otherwise, the directory update is completed and AL returns 00.

17 - Search for first entry on entry, DS:DX point to an unopened FCB. The disk directory is searched for the first matching name and if none is found, AL returns FF hex. Otherwise, the first 33 bytes at the current disk transfer address are filled with the directory entry and AL returns 00. The first byte is the drive number (A=1, B=2, etc.) and the next 11 bytes are the 8-character file name and 3-character extension. Note that this is the format of an unopened FCB.

18 - Search for next entry. After Function 17 has been called and found a match, Function 18 may be called to find the next match in the directory. Additional matches will be found because of duplicate names or because of "?"s appearing in the file name. Return information is the same as Function 17. DS:DX must point to the same FCB used earlier by Function 17, and this FCB must be unchanged (including no OPEN or CREATE operations on it) because it includes information necessary to continue the search.

19 - Delete file. On entry, DS:DX point to an unopened FCB. All matching directory entries are deleted. If no directory entries match, AL returns FF, otherwise AL returns 00.

20 - Sequential read. On entry, DS:DX point to an opened FCB. The 128-byte record addressed by the Current Block and Current Record fields is loaded at the disk transfer address, then the record address in incremented. If end-of-file in encountered, AL returns 01, otherwise AL returns 00.

21 - Sequential write. On entry, DS:DX point to an opened FCB. The 128-byte record addressed by the Current Block and Current Record fields is written from the disk transfer address, then the record address in incremented. If the disk is full, AL returns 01, otherwise AL returns 00.

22 - Create file: On entry, DS:DX point to an unopened FCB. The disk directory is searched for a file of the same name, or failing that, any empty entry, and AL returns FF hex if none is found or the file name is invalid (such as imbedded "?"). Otherwise, the entry is initialized to a zero-length file, the file is opened (see Function 15), and AL returns OO.

23 - Rename file. On entry, DS:DX point to a modified FCB which has a drive code and file name in the usual position, and a second file name starting 6 bytes after the first (DS:DX+17) in what is normally reserved area. Every matching occurence of the first file name is changed to the second name. If question marks (3F hex) appear in the second file name, then the corresponding positions in the original name will be unchanged. AL returns FF hex if no match was found, otherwise 00.

25 - Current disk. AL returns with the code of the current default drive (0=A, 1=B, etc.).

26 - Set disk transfer address. The disk transfer address is set to DS:DX.

27 - Allocation table address. On return, DS:BX point to the allocation table for the current drive, DX has the number of allocation units, and AL has the number of records per allocation unit. This function is intended only for system utilities written by SCP.

31 - Disk parameter address. On return, DS:BX point to an internal table of parameters for the current default disk. This function is intended only for system utilities written by SCP.

33 - Random read. On entry, DS:DX point to an opened FCB. The Current Block and Current Record are set to agree with the Random Record field, then the 128-byte record addressed by these fields is loaded at the disk transfer address. If end-of-file is encountered, AL returns 01, otherwise AL returns 00.

34 - Random write. On entry, DS:DX point to an opened FCB. The Current Block and Current Record are set to agree with the Random Record field, then the 128-byte record addressed by these fields is written from the disk transfer address. If the disk is full, AL returns 01, otherwise AL returns 00.

35 - File size. On entry, DS:DX point to an unopened FCB. The disk directory is searched for the first matching entry and if none is found, AL returns FF hex. Otherwise the Random Record field is set with the size of the file (in 128-byte records) and AL returns 00.

36 - Set Random Record field. On entry, DS:DX point to an opened FCB. This function sets the Random Record field to the same file address as the Current Block and Current Record fields.

39 - Random block read. On entry, DS:DX point to an opened FCB, and CX contains a record count which must not be zero. The specified number of records are read from the file address specified by the Random Record field into the disk transfer address. If end-of-file is reached before all records have been read, then AL returns 01. If wrap-around above address FFFF hex in the disk transfer segment would occur, as many records as possible are read and AL returns 02. If all records are read successfully, AL returns 00. In any case, CX returns with the actual number of records read, and the Random Record and Current Block/Current Record fields are set to address the next record (the first record NOT read).

40 - Random block write. On entry, DS:DX point to an opened FCB, and CX contains a record count. The specified number of records are written from the disk transfer address to the file address specified by the Random Record field. If successful, AL returns 00. If there is insufficient space on the disk, AL returns 01, no records are written, but CX returns the maximum number of records that could be written. If wrap-around above address FFFF hex in the disk transfer segment would occur, no records are written and AL returns 02.

A special case of this function is invoked when CX=0 on entry. This causes the file size to be set to length specified by the Random Record field—upon completion, the Random Record field will point to the first record beyond the end-of-file. The file will be extended or shortened as necessary to achieve the requested length. This provides a means to pre-allocate files, or to shorten existing files. If there is insufficient disk space to extend the file as requested, then AL returns 01 and the file size is not changed. Otherwise, AL returns 0.

41 - Parse file name. On entry, DS:SI point to a command line to parse, and ES:DI point to an empty portion of memory to be filled in with an unopened FCB. If AL = 1, then leading separators are scanned off the command line at DS:SI. If AL = 0, then no scan-off of leading separators takes place.

The command line is parsed for a file name of the form x:filename.ext, and if found, a corresponding unopened FCB is created at ES:DI. If no drive specifier is present, then the default drive is assumed. If no extension is present, it is assumed to be all blanks. If the character "*" appears in the file name or extension, then all remaining characters in the file name or extension are set to "?".

If either a "?" or "*" appears in the file name or extension, then AL returns 01, otherwise 00. DS:SI will return pointing to the first character after the file name. If no valid file name was present, ES:DI+1 will point to a blank.

Miscellaneous Functions

O - Program terminate. The Terminate and Ctrl-C Exit addresses are, restored to the values they had on entry to the terminating program. All file buffers are flushed, but files which have been changed in length but not closed will NOT be recorded properly in the disk directory. Control transfers to the Terminate address.

37 - Set vector. The interrupt type specified in AL is set to vector to the address DS:DX. See the section on interrupt table usage for a list of certain pre-defined interrupt types.

38 - Create new program segment. On entry, DX has the segment number at which to set up a new program segment. The entire 100 hex area at location zero in the current program segment is copied into location zero of the new program segment. The memory size information at location 6 is updated, and the current Terminate and Ctrl-C Exit addresses are saved in the new program segment starting at OA hex.

Using Operating System Functions

Disk File Reading and Writing

It is strongly recommended that all disk I/O use the block read and block write functions, Functions 39 and 40, rather than Functions 20, 21, 33, or 34. Since the block read and write functions update the Random Record field of the FCB, they may be used for sequential access as well as random, or any intermixing. Programs which would ordinarily sequentially read or write one record at a time might experience considerable improvement in performance if several records were buffered instead of just one. The block I/O functions allow this buffer size to be variable, depending, for example, on available memory size.

The Line Editor: Function 10

The most straighforward use of the editing features provided by Function 10, buffered console input, is allowing the user to correct mistakes in the line currently being entered. However, their are two other important uses, both of which take advantage of the fact that a template may already be present in the input buffer before the system call is made.

The simpler of the two is used by COMMAND and all other standard 86-DOS programs. By simply re-using the same buffer each time an input line is requested, then the previous line entered becomes the template for the new line. This allows the user to easily repeat a command, or to correct an error in the previous command. Or when used with a BASIC interpreter, for example, the user could correct the last program line entered (since the line number insures the old line will be replaced), or the line number could be changed so that several similar lines could be entered easily.

If the program wishes to actively use the editing features, it may load any arbitrary text into the buffer before requesting Function 10. Note that the second byte of the buffer must be set with the character count and an ASCII carriage return must immediately follow the text in the buffer. EDLIN, the text editor provided with 86-DOS, uses this method to provide editing within a line. A BASIC interpreter with an EDIT command could load the specified line into the buffer and let Function 10 do the rest. Any program in which there is a "typical response" at a given moment could make the template this response to allow the user to select it easily.

It is important for any program that wishes to provide line editing to use the features of Function 10 to do so. This provides the user with a set of editing operations that are consistent from program to program, and that have been tailored in one step to match the user's terminal (during 86-DOS customizing).

Running a User Program

The operating system core provides no direct means to run user programs. Instead, to run a given program represented by a disk file, the file must be opened and read into memory using the normal system functions. These functions are requested by the user program that is currently running.

The first user program to run is the initialization routine that follows a system boot, which normally loads and executes the file COMMAND.COM. This is a user program that accepts commands from the console and translates them into system function calls. COMMAND includes the capability to load and execute other program files; when these other programs terminate, COMMAND regains control. Thus COMMAND is responsible for the initial conditions that are present when a program is executed.

A standard set of initial conditions is provided by COMMAND on entry to another program. It is possible for programs other than COMMAND to load and execute program files, and they must also provide the same initial conditions so that a consistent interface may be assumed by the newly executing program. These initial conditions are as follows:

All four segment registers have the same value, and the corresponding absolute memory address is the base of a "program segment". The program is loaded and begins execution at location 100 hex in the program segment. Other assignments in the program segment are:

00 - 01: Termination point. Contains an interrupt type 20 hex, which returns control to the originating program. Thus a JMP 0 or INT 20H are the normal ways to terminate a program.

02 - 03: Memory size. Contains the first segment number after the end of memory.

05 - 05: Alternate function request entry point. See "Requesting a Function".

06-07: Segment size. This is the number of bytes available in the program segment.

08 - 21: Reserved.

22 - 5B: Default stack. The stack pointer is initially 5A hex, with a word of zeros on the top. Thus executing a "return" instruction will cause a transfer to location 0 and the program will terminate normally. This stack may be used as-is, or a new one may be set up. Remember that 32 bytes of stack space are required to perform system calls.

5C - 67, 6C - 77: Formatted parameters. Each of these areas may contain a

Page 17

RUNNING A USER PROGRAM (Continued)

parameter, usually a file name. The first byte of each area is zero unless a disk drive is being specified, in which case l=drive A, 2=drive B, etc. The rest is blanks if no parameter is present. No lower-case letters are allowed in these fields—they must be converted to upper case. If the parameter is a file name, then the next 8 bytes have the name, followed by the 3-character extension. Thus each parameter is properly formatted as an unopened FCB, except that the reserved area of the first overlaps onto the second. If both parameters are used as file names, the second one must be moved to a different area or it will be destroyed when the first is opened.

80 - FF: Unformatted parameters. Any information to be passed may be placed in this area. The disk transfer address is initially set to 80 hex.

COMMAND prepares the parameter areas from the console input line that specified the program to be executed. For example, if COMMAND sees an line of the form

filel> <file2>

this is a request to execute the file progname.COM. <file1> and <file2> each may or may not include a disk specifier or a file name extension, but in any case they appear in the formatted parameters at 5C hex and 6C hex. In addition, the entire input line after the last letter of progname appears in the unformatted parameter area beginning at 81 hex, with the number of characters placed at 80 hex.

Suppose the input line is

COPY T. BAK B: TEST. ASH

The formatted parameter at 50 hex will contain

00 "T BAK"

at 6C hex will be

02 "TEST ASM"

and at 80 hex will be

17 " T.BAK B:TEST.ASH"

where the 17 is decimal.

Page 18

Customizing 86-DOS

Setting the Special Editing Commands

The escape codes used by Function 10, buffered console input, can be set for the convenience of the user. For each special editing command, two escape codes are allowed. They are set in a table starting at address 0003 in 86-DOS. The beginning of 86-DOS looks like this:

0000	JMP	INIT	
0003 0003	ESCTAB:	"SC"	;Copy one character from template
0005	pВ	"VN"	:Skip over one character in template
0007	DB	"TA"	;Copy up to specified character
0009	DB	"WB"	;Skip up to specified character
O00B	DB	"UH"	;Copy rest of template
O00D	DB	"HH"	;Kill line with no change in template (Ctrl-X)
000F	DB	"RH"	;Cancel line and update template
0011	DB	"מִמ"	;Backspace (same as Ctrl-H)
0013	DB	"bß"	Enter Insert mode
0015	DB .	"QL"	;Exit Insert mode
0017	DB	ibh, ibh	Escape sequence to represent escape character

For example, the character sequences ESC S or ESC C will copy one character from the template to the new line. Note that there are three entries with the same letter for both codes. This is simply a way to make only one code available for that function.

The last entry in the table is the escape sequence to be used to pass the ESC character (IE hex). In the standard table shown here, this is done by typing ESC twice, but it could also be set up for any other escape sequence.

Customizing the I/O Section

In order to provide the user with maximum flexibility, the disk and simple device I/O handlers of 86-DOS are a separate subsystem which may be configured for virtually any real hardware. This I/O system is located starting at absolute address 400 hex, and may be any length. The DOS itself is completely relocatable and normally starts immediately after the I/O system.

Beginning at the very start of the I/O system (absolute address 400 hex) is a series of 3-byte jumps (long intra-segment jumps) to various routines within the I/O system. These jumps look like this:

0000	JMP	INIT	; System initialization
0003	JMP	STATUS	; Console status check
0006.	JMP	CONIN	; Console input
0009	JMP	CONOUT	; Console output
00 OC	JMP	PRINT	; Printer output
00.0F	JMP	MIXUA	; Auxiliary input
0012	MP	TUOKUA	; Auxiliary output
0015	JIP	READ	; Disk read
0018	MP	WRITE	; Disk write
00 1B	JMP	FLUSH	; Empty disk buffers

The First jump, to INIT, is the entry point from the system boot. All the rest are entry points for subroutines called by the DOS. Inter-segment calls are used so that the code segment is always 40 hex (corresponding to absolute address 400 hex) with a displacement of 3, 6, 9, etc. Thus each routine must make an inter-segment return when done (RET L with our assembler).

The function of each routine is as follows:

INIT - System initialization

Entry conditions are established by the system bootstrap loader and should be considered unknown. The following jobs must be performed:

A. All devices are initialized as necessary.

B. A local stack is set up and DS:SI are set to point to an initialization table. Then an inter-segment call is made to the first byte of the DOS, using a displacement of zero. For example:

```
MOV AX,CS; Get current segment
MOV D5,AX
MOV S5,AX
MOV SP,STACK
MOV S1,INITTAB
CALL 0,DOSSEG -
```

The initialization table provides the DOS with information about the disk system. The first byte is the number of drives (16 or fewer), followed by two 2-byte entries for each drive. The first of the two entries for each drive is the address (in the same data segment) of a disk drive parameter table (DPT). Similar drives may point to the same DPT.

Page 20

Below is a brief description of each entry of the DPT. The format of the DPT will be significantly different (easier to change) in Version 1.0 of 86-DOS, and more information will be available then.

- 1. Number of 128-byte records per physical sector. 1 byte.
- 2. Number of 128-byte records per allocation unit. 1 byte.
- 3. Number of reserved 128-byte records at beginning of disk. 2 bytes.
- 4. Size of allocation table, in 128-byte records. Each allocation unit (item 7) requires 1.5 bytes in the allocation table. 1 byte.
- 5. Number of allocation tables kept on the drive. I byte.
- 6. Number of 128-byte records devoted to the directory. There are 8 directory entries per record. 1 byte.
- 7. Number of allocation units on the drive. 2 bytes.

The second of the two entries for each drive is the displacement of the allocation table for that drive. Normally, the first drive will be given a displacement of zero, and each subsequent drive will be assigned a space immediately after the previous drive's table ends. The size of the table for any drive is 128 bytes times the number of records specified in item 4 above. Note that no space need be provided by the I/O system for the allocation tables; this space is assigned by the DOS during initialization.

On the next page is a sample of an initialization table.

Below is a sample of a complete initialization table for four single-density IBM format disk drives:

```
INITTAB:
                         ; Number of drives
        DB.
                 DRIVEO
        DW
                 AT0
        DW
                 DRIVE1
        DW
        DW
                 AT1
                 DRIVE2
        DW
        DU
                 AT2
        DW
                 DRIVE3
        DW
                 AT3
DRIVEO:
DRIVE1:
DRIVE2:
DRIVE3:
; All drives are defined the same
                         ; Records/sector
                 1
        DB
                         ; Records/allocation unit
        DB
                 4
                         ; Reserved records (two tracks)
                 52
        DW
                         ; Allocation table size, records
                 6
        DB
                         ; Number of allocation tables (1 backup)
        DB
                 2
                         ; Number of directory records (64 entries)
        DB
                         ; Number of allocation units (512 bytes ea.)
        DW
                 482
                         ; Allocation tables are in their own segment
         ORG
                 300H
                          : Six 128-byte records
         DS
ATO:
                 300H
AT1:
         DS
AT2:
         DS
                 300H
AT3:
                 300H
```

- C. When the DOS returns to the INIT routine in the I/O system, DS has the segment of the start of free memory, where a program segment has been set up. The remaining task of INIT is to load and execute a program at 100 hex in this segment, normally COMMAND.COM. The steps are:
 - I. Set the disk transfer address to DS:100H.
 - 2. Open COMMAND.COM. If not on disk, report error.
 - 3. Load COMMAND using the block read function (Function 39). If end-of-file was not reached, or if no records were read, report an error.
 - 4. Set up the standard initial conditions and jump to 100 hex in the new program segment.

 \mathcal{A}

An example of code which performs this task is given:

```
DX, 100H
        MOV
                 AH, 26
        HOV
                                  ;Set transfer address to DS: 100H
                 21H
        INT
                                  ;Save segment for later
        MUV
                 BX,DS
; DS must be set to CS so we can point to the FCB
                 AX,CS
        YOM
        MOV
                 DS, AX
                                  ;File Control Block for COMMAND.COM
        MOV
                 DX, FCB
                 AH, 15
        MOV
                                   Open COMMAND.COM
                 21H
        INT
                 AL, AL
        OR
                                   Error if file not found
                 COMERR
         JNZ
                                   ;Set Random Record field
        MOV
                 [FCB+33],0
                 B, [FCB+35], 0
        MOV
                                   :Load maximum records
                 CX, 200H
        MOY
                 AH, 39
        MOA
                                   ;Block read
                 2171
        INT
                                   Error if no records read
                 COHERR
         JCXZ
                 AL, 1
         CMP
                                   Error if not end-of-file
         JNZ
                 COMERR
                                   ;All segment reg.s must be the same
                 DS, BX
         MOV
                 ES, BX
         110V
                 SS, BX
         YOM
                                   ;Stack must be 50 hex
         VOM
                 SP, 5CH
                 AX, AX
         KOR
                                   ; Put zero of top of stack
         PUSII
                 ΑX
                 DX, 80H
         Von
                 AH, 26
         HOV
                                   ;Set transfer address to default
                  21H
         INT
                 BX
         PUSH
         MOV
                 AX, 100H
         PUSH
                  ΑX
                                   Jump to COMMAND
         RET
                 L
COMERR:
                  DX, BADCOM
         YOR
                  AH, 9
         MOV
                                   ;Print error message
         INT
                  21H
                                   ;Don't know what to do
                  STALL
         ЛP
STALL:
                  13,10,"Bad or missing Command Interpreter",13,10,"$"
BADCOM: DB
                  I,"COMMAND CON"
         DB
FCB:
                  24
         DS
```

STATUS - Console input status

If a character is ready at the console, this routine returns a non-zero value in AL and the zero flag is clear. If no character is ready, AL returns zero and the zero flag is set. No registers other than AL may be changed.

CONIN - Console input

Wait for a character from the console, then return with the character in AL. No other registers may be changed.

CONOUT - Console output

Output the character in AL to the console. No registers may be affected.

PRINT - Printer output

Output the character in AL to the printer. No registers may be affected.

· AUXIN - Auxiliary input

Wait for a byte from the auxiliary input device, then return with the byte in AL. No other registers may be affected.

AUXOUT - Auxiliary output

Output the byte in AL to the auxiliary output device. No registers may be affected.

READ - Disk read WRITE - Disk write

On entry,

AL = Drive number (starting with zero)

AH = Directory flag (WRITE only)

CX = Number of 128-byte records to transfer

DX = Logical record number

DS:BX = Transfer address.

The number of records specified are transfered between the given drive and the transfer address. "Logical record numbers" are obtained by numbering each record sequentially starting from zero, and continuing across track boundaries. Thus for standard floppy disks, for example,

Page 24

logical record 0 is track 0 sector 1, and logical record 53 is track 2 sector 2. This conversion from logical record number to track and sector is done simply by dividing by the number of records per track. The quotient is the track number, and the remainder is the record on that track. (If the first sector on a track is 1 instead of 0, as with standard floppy disks, add one to the remainder.)

"Sector mapping" is not used by this scheme, and is not recommended unless contiguous sectors cannot be read at full speed. If sector mapping is desired, however, it may be done after the logical record number is broken down into track and sector. The 8086 instruction XLAT is quite useful for this mapping.

All registers except the segment registers may be destroyed by these routines. If the transfer was successfully completed, the routines should return with the carry flag clear. If not, the carry flag should be set, and CX should have the number of records remaining to be transfered (including the record in error).

On disk writes only, register AH is zero for normal writes and non-zero for directory writes. Thus if disk I/U is being buffered in memory, as would be the case if physical sector size is greater than 128 bytes, then this memory buffer must be flushed to disk when AH is non-zero to insure the directory is updated. Version 1.0 of 86-DOS will automatically handle physical sector sizes larger than 128 bytes and buffering in the I/O area will no longer be necessary.

FLUSH - Empty disk buffers

This routine is called when a file is closed or when the disk system is reset. It may be used to write to disk any disk buffers that have been kept in memory. On entry, AL has the drive number whose buffers should be flushed, or if AL = -1, then flush all buffers. All registers may be destroyed except the segment registers. If memory buffering is not used, this routine may simply return (inter-segment).

Version 1.0 of 86~DOS will automatically handle physical sector sizes larger than 128 bytes and this routine will no longer be used.

```
Bootstrap Loader Listing
;This is a disk boot routine for the 1771/1791 type disk
; controllers. It would normally reside on track 0,
; sector 1, to be loaded by the "B" command of the
monitor ar address 200H. By changing the equates
; below, it may be configured to load any size of
program at any address. The program is assumed to
;occupy consecutive sectors starting at track 0, sector
; 2, and will begin exection at its load address (which
; must be a 16-byte boundary) with the Instruction
; Pointer set to zero.
; Variations are available for the Cromemco 4FDC with
; large disks, the 4FDC with small disks, the Tarbell
; single-density controller, and the Tarbell double-
; density controller. Select one.
                        0
                EOU
CROMENCOSMALL:
                       0
CROMEMCOLARGE:
                EQU
TARBELLS INCLE:
                        l
                EQU
                        O
TARBELLDOUBLE:
                EQU
                        ;Address to load program
                400H
LOAD:
        EQU
                40H
                        :LOAD/10H
        EQU
SEG:
                        ;No. of 128-byte sectors to load
                51
SECTOR: EQU
                        ;"B" command puts booter here
                200H
BOOTER: EQU
 CROMEMCOLARGE+CROMEMCOSMALL
                EQU
 CROMEMCO:
                        TARBELLSINGLE+TARBELLDOUBLE
                EQU
 TARBELL:
                CROMENCO+TARBELLS INGLE
 WD1771: EQU
                TARBELLDOUBLE
 WD1791: EQU
                CROMEMCOSMALL
 SMALL:
        EOU
                CROMEMCOLARGE+TARBELL
 LARGE: EQU
                SMALL
        IF
 MAXSECT: EQU
                18
        ENDIF
                LARGE
         IF
                26
 MAXSECT: EQU
        ENDIF
                TARBELL
         IF
                SOH
 DONEBLT: EQU
                78H
 DISK:
         EUU
         ENDIF
```

Page 26

DISK:

DONEBIT: EQU

IF

EQU ENDIF CROMEMCO

30H

WD1771 IF 88H READCOM: EQU ENDIF T/D1791 IF READCOM: EQU 80H ENDIF CROMENCOLARGE IF OB 1H WAITBYTE: EQU ENDIF CROMENCOSMALL ΙF WAITBYTE: EQU OA III EMDIF BOOTER ORG 100H PUT AX,AX XOR DS, AX HOV ES,AX MOV SS,AX HOV ;For debugging purposes SP, BOOTER HOV UP DI,LOAD NOV DX, SECTOR YOM BL,2 HOV SECT: AL, OD OH Force Interrupt command MOV To Force Type I status OUT DISK AAN BL, MAXSECT+1 CMP NOSTEP JNZ ;Step in with update AL, 58R MOV DCOM CALL MOV BL, L NOSTEP: AL, BL MOV DISK+2 OUTB CROMENCO ΙF AL, WAITBYTE MOV ;Turn on hardware wait DISK+4 OUT ENDIF Get head load status INB DISK nor ΑL AL, 20H AND OUTCOM JZ AL,4 NOV

BOOTSTRAP LOADER LISTING (Continued)

Page 27

BOOTSTRAP LOADER LISTING (Continued) OUTCOM: AL, READCOM OR DISK OUTB MOA CX, 128 DI PUSH READ: INB DISK+4 AL, DONEBIT TEST IF TARBELL DONE JZ ENDIF CROMENICO IF DONE JNZ ENDIF DISK+3 INB STOB LOOP READ DONE: DΙ POP CETSTAT CALL AL, 9CH AND SECT JNZ DI,128 ADD INC BL DX DEC SECT JNZ 0,SEC JMP DCOM: DISK OUT AAM GETSTAT: DISK+4 INB AL, DONEBIT TEST TARBELL IF GETSTAT JNZ ENDIF IF CROMEMCO GETSTAT JZ ENDIF DISK IN RET Page 28

I/O Section Listing

```
; I/O System for 86-DOS.
; Assumes a CPU Support card at FO hex for character I/O,
; with disk drivers for Tarbell or Cromemco controllers.
; Select disk controller here
TARBELL: EQU
                1
                0
CROMENICO: EQU
; For either disk controller, a custom drive table may be defined
CUSTOM: EQU
; If Tarbell disk controller, select one-sided or two-sided drives
; and single or double density controller
DOUB ISIDE: EQU
                0
                 0
DOUB 2SIDE: EQU
SMGLISIDE: EQU
; If Gromemco disk controller, select drive configuration
                                 ;3 small drives
                0
SMALLCRO: EQU
                                 ;2 large drives and 1 small one
                 0
COMBCRO: EQU
                                 ;4 large drives
```

;Use table below to select head step speed. Step times for 5" drives is double ; that shown in the table. Times for Fast Seek mode (Cromemco controller with ;PerSci drives) is very small - 200-400 microseconds.

```
1771
                            1791
; Step value
                             3ms
       0
                    6ms
                             Sus
                    6ms
      1
;
                            10ns
                   10ms
       2
                            I5ms
                  20ms
       3
```

STPSPD: EQU

LARGECRO: EQU

;Some drives require a delay between writing and stepping so that the tunnel ; erase operation does not smear across data. If needed, set ERASE to 1 and ;set URTDLY for the amount of the delay (software loop). For a given delay in ;microseconds, WRTDLY = (delay * 8) / 18.

```
1
ERASE: EQU
                        ;530 microseconds
                236
URTDLY: EQU
```

1

```
I/O SECTION LISTING (Continued)
;Some disk drives cannot be driven at full speed (6 tracks/sec), even if the
;full head step delay is used. To slow them down, a "verify" can be performed
after each head step during a continuous read or write operation. Select by
setting VERIFY to VERON, disable with VEROFF.
               STPSPD+4
VERON: EQU
VEROFF: EQU
               VERON
VERIFY: EQU
DOUB ISIDE+DOUB 2SIDE
WD1791: EQU
               CROHEMCO+SNGL1SIDE
WD1771: EQU
               WD1791
        IF
               80H
READCOM: EQU
               OAOH
WRITECOM: EQU
        ENDIF
               WD1771
               88H
READCOM: EQU
               H8A0
WRITECOM: EQU
       END IF
               TARBELL
        IF
               80H
DONEBIT: EOU
               78H
DISK:
        EQU
        ENDIF
               CROHEMCO
        IF
DONEBIT: EQU
               1
DISK:
        EOU
               30H
        ENDIF
               80H
DOSSEG: EQU
               0
        PUT
               100H
               OFOH
        EQU
BASE:
               BASE+7
        EQU
STAT:
               2
        EQU
DAV:
TBMT:
        EQU
               BASE+6
DATA:
        EQU
PSTAT:
        EQU
               BASE+ODH
               BASE+OCH
PDATA: EQU
               INIT
        JMP
               STATUS
        JMP
               INP
        JMP
               OUTP
        JMP
               PRINT
        JPP
               MIXUA
        JMP
```

Page 30

```
I/O SECTION LISTING (Continued)
        JMP
                 TUCKUA
                READ
        MIP
                WRITE
        JMP
                RETL
                          :Flush buffers
        JMP
INIT:
                                  ;Get current segment
        MOV
                 AX,CS
        MOV
                 DS, AX
                 SS,AX
        MOV
                 SP, STACK
        HOV
                 SI, INITTAB
        MOV
                 0,DOSSEG
        CALL
                 DX, 100H
        MOV
                                   Set DMA address
                 AH, 26
        MOV
                 21H
         INT
                                   ;Save segment for later
                 BX,DS
        MOV
;DS must be set to CS so we can point to the FCB
        110 V
                 AX, CS
                 DS,AX
         MOV
                                   ;File control Block for COMMAND.COM
                 DX, FCB
         MOV
                 AH, 15
         110 V
                                   ;Open COMMAND.COM
                 21H
         INT
         OR
                 AL, AL
                                   Error if file not found
         JNZ
                 COMERR
                                   ;Set 3-byte Random Record field to
                  [FCB+33],0
         MOV
                                       beginning of file
                 B, [FCB+35],0
         MOV
                                   ;Load maximum records
                 CX, 200R
         MOV
                                   ;Block read
                 AH, 39
         MOV
                  21H
         LHT
                                   Error if no records read
                  COMERR
         JCXZ
         CHP
                  AL, l
                                   Error if not end-of-file
                  COMERR
         JNZ
 ;Make all segment registers the same
                  DS,BX
         VOM
                  ES.BX
         MOV
                  SS,BX
         HOV
                                   ;Set stack to standard value
         MOV
                  SP, 5CH
                  XA,XX
         XOR
                                   Put zero on top of stack for return
                  ΛX
         PUSII
                  DX, 80H
         110V
                  AH, 26
         HOV
                                   ;Set default transfer address (DS:0080)
                  21H
         INT
                                   ; Put segment on stack
         PUSH
                  BX
                  AX, 100H
         HOV
                                    ;Put address to execute within segment on stack
         PUSH
                  ΛX
                                    ; Jump to COMMAND
                  L
         RET
 COMERR:
                  DX, BADCOM
          HOV
                                    :Print string
                  AII,9
         NOV
          INT
                  21H
          ΕI
                  STALL
 STALL:
         JP
```

Page 31

```
I/O SECTION LISTING (Continued)
                  13,10,"Bad or missing Command Interpreter",13,10,"$"
1,"COMMAND COM"
BADCOM: DB
FCB:
        · DB
         DS
                  24
STATUS:
                  STAT
         IN
                  AL,DAV
         AND
         RET
AUXIN:
.INP:
                  STAT ·
         IN
         AND
                  AL, DAV
         JZ
                  INP
         IN
                  DATA
         AND
                  AL, 7FH
         RET
                  L
AUXOUT:
OUTP:
         PUSH
                  AX
OUTLP:
         IN
                  STAT
                  AL, TBMT
         AND
                  OUTLP
         JZ
         POP
                  ΑX
         OUT
                  DATA
         RET
                  L
 PRINT:
         PUSH
                  ΑX
PRINLP:
         IN
                  PSTAT
                  AL, TBMT
         AND
                  PRINLP
         JZ
                  AX
         POP
                  PDATA
         OUT
         RET
                  L
READ:
                                    ;Position head
         CALL
                  SEEK
         JC
                  ERROR
RDLP:
                  CX
         PUSH
         CALL
                  READSECT
                                    ;Perform sector read
         POP
                  CX
                  ERROR
         JC
         INC
                  DH
                                    ;Next sector number
         ADD
                  SI,128
                                    ;Bump address for next sector
                                    ;Read each sector requested
         LOOP
                  RDLP
         OR
                  AL, AL
RETL:
         RET
Fage 32
```

Table 1

```
I/O SECTION LISTING (Continued)
WRITE:
                                  :Position head
        CALL
                 SEEK
                 ERROR
        JC
WRTLP:
                 CX
        PUSH
                                  ;Perform sector write
                 WRITESECT
        CALL
                 CX
        POP
                 ERROR
         JC
                                  ;Bump sector counter
                 DH
         INC
                                  :Bump address
                 SI,128
         ADD
                                  Write CX sectors
         LOOP
                 WRTLP
         \mathbf{or}
                 AL,AL
         RET
ERROR:
                 CS
         SEG
                 B, [DI],-1
         VOH
         RET
SEEK:
 ; Inputs:
         AL = Drive number
         BX = Disk transfer address in DS
         CX = Number of sectors to transfer
         DX = Logical record number of transfer
  Function:
         Seeks to proper track.
   Outputs:
         AH = Drive sclect byte
         DL = Track number
         DH = Sector number
         SI = Disk transfer address in DS
         DI = pointer to drive's track counter in CS
   CX unchanged.
                                   ; Save transfer address
                  SI,BX
         340 V
         CBW
                                   ; Prepare to index on drive number
                  BX, AX
         HOV
                  CS
         SEG
                  AL, [BX+DRVTAB]
         MOV
                                   ; Select drive
                  DISK+4
         OUT
          ΙF
                  CROMEMICO
                                   ;Set auto-wait bit
                  AL, 80H
         OR.
         ENDIF
                                   ;Save for later
         YOM
                  AH, AL
                  AX,DX
          XCHC
                                   ;26 sectors per track
                  DL, 26
          NON
                  CROMENICO
          ΙF
                                   ;Check if small disk
                  DH, 10H
          TEST
                  RIGONE
          JNZ
                                   ;18 sectors on small disk track
                  DL, 18
          MOV
```

```
I/O SECTION LISTING (Continued)
BIGONE:
        ENDIF
                                   ;Compute track and sector
                 AL, DL
        DIV
                 AX,DX
        XCHG
                                   ;First sector is 1, not zero
        INC
                 DH
        SEG
                 CS
                                   ;Get this drive's displacement into track table
                 BL, [BX+TRKPT]
        MOV
                                  ;BX now points to track counter for this drive
                 BX, TRKTAB
        ŒŒ
                 DI, BX
        MOV
                 AL,DL
        MOV
                 CS
        SEC
                 AL, [DI]
                                   :Xchange current track with desired track
        XCHG
                                   :Inform controller chip of current track
         OUT
                 DISK+1
                 AL,DL
         CMP
                 ONTRK
         JZ
                                   ;Seek retry count
                 вн, з
         МОА
                                   ; Head position known?
         CMP
                 AL,-1
                                   ;If not, home head
                 NOHOME
         JNZ
TRYSK:
                 HOME
         CALL
NOHOME:
                 AL,DL
         HOV
                 DISK+3
         OUT
                 AL, 1CH+STPSPD
         MOV
                 MOVHEAD
         CALL
         AND
                  AL, 98H
                 ONTRK
         3Z
         DEC
                  BH
         JNZ
                  TRYSK
         STC
 ONTRK:
         RET
 SETUP:
                  AL, OD OH
                                   :Force Interrupt command
         MOV
                                   ;so Type I status will be available
                  DISK
         OUT
                  AX
         PUSH
                                   ;Pause 10 microseconds
         AAM
                  AX
         POP
                  CROMENCO
         IF
                                   ;Check for small disk
         TEST
                  AH, 10H
                  CHKSTP
          JNZ
                                   ;Only 18 sectors/track on small ones
                  DH, 18
          CHIP
                  STEP
          JA
 CHKSTP:
          ENDIF
                                   ;Check for overflow onto next track
          ClfP
                  DH, 26
                  PUTSEC
          JBE
 Page 34
```

```
I/O SECTION LISTING (Continued)
STEP:
                 DL
         INC
        MOV
                 DH, 1
                 AL, 58H+VERIFY
                                   Step in with update
        MOV
                 STPHEAD
         CALL
         SEG
                                   ;Update track counter
                 B,[DI]
         INC
PUTSEC:
                 AL, DH
         MOV
                 DISK+2
         OUT
                 CROMEMCO
         IF
         MOV
                 AL, AH
                                   ;Turn on auto-wait
                 DISK+4
         OUT
         ENDIF
                                   ;Get head load bit
                 DISK
         IN
                 ΑL
         NOT
                 AL, 20H
                                   ;Check head load status
         AND
                 CHKDRV
         JZ
                 AL, 4
         MOV
CHKDRY:
; Turn on 15ms head load delay if selecting a different drive
                 AH, [CURDRY]
         CMP
                 CS
         SEC
         MOV
                  [CURDRV], AH
         JZ
                 RET
                 AL,4
         MOV
         RET
READSECT:
         CALL
                  SETUP
                 BL, 10
         Von
RDAGN:
                 AL, READCOM
         OR
                 DISK
         OUT
                 CX, 80H
         MOV
                 SI
         PUSI
RLOOP:
                 DISK+4
         IN
                 AL, DONEBIT
         TEST
                 TARBELL
         IF
                 RDONE
         JZ
         ENDIF
                  CROHENICO
         IF
                 RDONE
         JNZ
         ENDIF
                 DISK+3
         IN
                  [SI],AL
         HOV
                  SI
         INC
                  RLOOP
         LOOP
```

Page 35

```
I/O SECTION LISTING (Continued)
RDONE:
        POP
                 SI
                 GETSTAT
AL, 9CH
        CALL
        AND
        JZ
                 RET
                 AL, 0
        VOM
        DEC
                 BL
                 RDAGN
        JNZ
        STC
        RET
WRITESECT:
                 SETUP
         CALL
        VOM
                 BL, 10
URTAGN:
                 AL, WRITECOM
         OR
        OUT
                 DISK
                 CX, 80H
        MOV
                 SI
         PUSH
IRLOOP:
                 DISK+4
         IN
         TEST
                 AL, DONEBIT
                 TARBELL
         IF
         JZ
                 URDONE
         ENDIF
         IF
                 CROMENCO
                 WEDONE
         JNZ
         ENDIF
         LODB
         OUT
                 DISK+3
                 WRLOOP
         LOOP
WRDONE:
         POP
                 SI
                 GETSTAT
         CALL
                 AL, OFCH
         AND
         JZ
                 RET
         YOM
                 AL, 0
         DEC
                 BL
                 WRTAGN
         JNZ
         STC
         RET
HOME:
                 CROMEMCO
         IF
                                   Check seek speed bit
         TEST
                 AH, 40H
                 RESTORE
         JNZ
         ENDIF
         HOV
                 BL,3
Page 36
```

100 100

I/O SECTION LISTING (Continued)

```
TRYHOM:
        VOM
                 AL, OCH+STPSPD
                 STPHEAD
         CALL
                 AL, 9811
         AND
         JZ
                 RET
                                   :Step in with update
        MOV
                 AL, 58H+STPSPD
                 DCOM
         CALL
         DEC
                 BL
         JNZ
                 TRYHOM
         RET
MOVHEAD:
                 CROHENCO
         IF
                 AH, 40H
                                   ;Check seek speed bit
         TEST
         JNZ
                 FASTSK
         ENDIF
STPHEAD:
                 ERASE
         IF
                 AX
         PUSN
                 AX, WRTDLY
         1107
DLYLP:
                 XΑ
         DEC
                 DLYLP
         JNZ
         POP
                 ΑX
         ENDIF
DCOM:
         OUT
                 DISK
         PUSH
                 AX
                                   ;Delay 10 microseconds
         AAM
         POP
                 AX
GETSTAT:
                 DISK+4
         In
                 AL, DONEBIT
         TEST
         IF
                 TARBELL
                 GETSTAT
         JNZ
         ENDIF
         IF
                 CROMEMOO
                 GETSTAT
         JZ
         ENDIF
                 DISK
         IN
         RET
                 CROMENCO
RESTORE:
                                   ; READ ADDRESS command to keep head loaded
         MOV
                 AL, OC4H
                 DISK
         OUT
         110V
                 AL, 77H
         our
                 4
```

```
I/O SECTION LISTING (Continued)
CHKRES:
         IN
                 AL,40H
         AND
                 RESDONE
         JZ
                 DISK+4
         IN
                 AL, DONEBLT
         TEST
                 CHKRES
         JZ
                 DISK
         IN
         JP
                 RESTORE
                                   ;Reload head
RESDONE:
                 AL, 7FH
         MOV
         OUT
                 GETSTAT
         CALL
                 AL,0
         MOV
                 DISK+1
                                   :Tell 1771 we're now on track 0
         OUT
         RET
FASTSK:
                 AL, 6FH
         MOV
         OUT
         MOV
                 AL, 18H
         CALL
                 DCOM
SKWAIT:
         IN
         TEST
                 AL, 40H
                 SKILAIT
         JNZ
         MOV
                 AL, 7FH
         OUT
         VOH
                 AL,0
         RET
         ENDIF
                 20H
         DS
STACK:
                 300H
LFAT:
         EQU
                 200H
         EQU
SFAT:
CURDRY: DS
                 1
LDRIVE:
                          ;Records/sector
         DB
                 4
                          ;Records/cluster
         DB
                 52
                          ;Reserved records
         DW
                          ;FAT size (records)
         DB
                 6
         DB
                 2
                          :Number of FATs
                 8
                          ;Number of directory records
         DB
                          ;Number of clusters on drive
         DU
                 482
Page 38
```

```
I/O SECTION LISTING (Continued)
SDRIVE:
                 I
        DB
                 2
        DB
                 54
        DW
        DΒ
                 4
        DB
                 2
        DB
                 R
                 325
        DW
                 DOUB ISIDE
        IF
                 0,10H,20H,30H
DRVTAB: DB
                 0,1,2,3
TRKPT: DB
TRKTAB: DB
                 -1,-1,-1
        ENDIF
                 DOUB 2S IDE
        IF
                 0,40H,10H,50H
DRVTAB: DB
                 0,0,1,1
TRKPT:
        DB
TRKTAB: DB
                 -1,-1
         ENDIF
                 SNGLISIDE
         IF
                 OF 2H, OE 2H, OD 2H, OCOH
DRVIAB: DB
                 0,1,2,3
TRKPT: DB
                 -1,-1,-1,-1
TRKTAB: DB
         ENDIF
                 TARBELL
         IF
                          ;Number of drives
 INITTAB:DB
                 LDRIVE
         DVI
                 FATO
         DW
                 LDRIVE
                 FAT1
         DW
                 LDRIVE
         DW
         DW
                  FAT2
                 LDRIVE.
         DW
                  FAT3
         DW
                  0
         ORG
 FATO:
         DS
                 LFAT
                 LFAT
         DS
 FAT1:
                  LFAT
 FAT2:
         DS
                  LFAT
         DS
 FAT3:
         ENDIF
 ; Cromenco drive select byte is derived as follows:
         Bit 7 = 0
 ;
         Bit 6 = 1 if fast seek (PerSci)
         Bit 5 = 1 (motor on)
 ï
         Bit 4 = 0 for 5", 1 for 8" drives
         Bit 3 = 1 for drive 3
 Ş
          Bit 2 = 1 for drive 2
          Bit 1 = 1 for drive 1
          Bit 0 = 1 for drive 0
```

Į

I/O SECTION LISTING (Continued) LARGECRO IF ; Table for four large drives 71H, 72H, 74H, 78H DRVTAB: DB 0,0,1,1 TRKPT: DB -1,-1 TRKTAB: DB ;Number of drives INITTAB:DB LDRIVE DW **FATO** DN LDRIVE DW FAT1 DW LDRIVE DW FAT2 DW DVI LDRIVE FAT3 DW 0 ORG FATO: DS LFAT LFAT FAT 1: DS LFAT FAT2: DS LFAT FAT3: DS ENDIF COMBCRO IF ; Table for two large drives and one small one DRVTAB: DB 71H, 72H, 24R TRKPT: DB 0,0,1 -1,-1TRKTAB: DB 3 :Number of drives INITTAB:DB LDRIVE DN FAT0 DW LDRIVE DW DW FAT1 DU SDRIVE DW FAT2 0 ORC LFAT FATO: ďS LFAT DS FAT1: SFAT DS FAT2: ENDIF Page 40

. I/O SECTION LISTING (Continued)

```
SMALLCRO
        IF
; Table for 3 small drives
                 21H, 22H, 24H
DRVTAB: DB
TRKPT: DB
TRKTAB: DB
                 0,1,2
                 -i,-1,-1
                 3
INITTAB: DB
        DW
                 SDRIVE
                 FAT0
        DΝ
                 SDRIVE
        DW
        DW
                 FAT1
        DW
                 SDRIVE
                 FAT2
        DU
        ORG
                 0
                 SFAT
        DS
FATO:
                 SFAT
        DS
FAT1:
FATZ:
        DS
                 SFAT
        ENDIF
                 CUSTOM
         IF
; Table for 2 large drives without fast seek
                 31H, 32H
DRVIAB: DB
                 0,1
TRKPT: DB
                 -1,-1
TRKTAB: DB
                 2
INITTAB:DB
                 LDRIVE
         DW
                 FATO
         DII
                 LDRIVE
         DW
                 FAT1
         DΜ
         ORG
                 LFAT
FATU:
         DS
                 LFAT
         DS
FAT1:
         ENDIF
```